Your browser doesn't support javascript.
loading
TIGAR: An Improved Bayesian Tool for Transcriptomic Data Imputation Enhances Gene Mapping of Complex Traits.
Nagpal, Sini; Meng, Xiaoran; Epstein, Michael P; Tsoi, Lam C; Patrick, Matthew; Gibson, Greg; De Jager, Philip L; Bennett, David A; Wingo, Aliza P; Wingo, Thomas S; Yang, Jingjing.
Afiliación
  • Nagpal S; School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
  • Meng X; Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA; Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
  • Epstein MP; Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, GA 30322, USA; Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
  • Tsoi LC; Department of Dermatology; Department of Computational Medicine & Bioinformatics; Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA.
  • Patrick M; Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
  • Gibson G; School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA.
  • De Jager PL; Medical Center Neurological Institute, Columbia University, New York, NY 10032, USA.
  • Bennett DA; Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA.
  • Wingo AP; Division of Mental Health, Atlanta VA Medical Center, Decatur, GA, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
  • Wingo TS; Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
  • Yang J; Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA. Electronic address: jingjing.yang@emory.edu.
Am J Hum Genet ; 105(2): 258-266, 2019 08 01.
Article en En | MEDLINE | ID: mdl-31230719
The transcriptome-wide association studies (TWASs) that test for association between the study trait and the imputed gene expression levels from cis-acting expression quantitative trait loci (cis-eQTL) genotypes have successfully enhanced the discovery of genetic risk loci for complex traits. By using the gene expression imputation models fitted from reference datasets that have both genetic and transcriptomic data, TWASs facilitate gene-based tests with GWAS data while accounting for the reference transcriptomic data. The existing TWAS tools like PrediXcan and FUSION use parametric imputation models that have limitations for modeling the complex genetic architecture of transcriptomic data. Therefore, to improve on this, we employ a nonparametric Bayesian method that was originally proposed for genetic prediction of complex traits, which assumes a data-driven nonparametric prior for cis-eQTL effect sizes. The nonparametric Bayesian method is flexible and general because it includes both of the parametric imputation models used by PrediXcan and FUSION as special cases. Our simulation studies showed that the nonparametric Bayesian model improved both imputation R2 for transcriptomic data and the TWAS power over PrediXcan when ≥1% cis-SNPs co-regulate gene expression and gene expression heritability ≤0.2. In real applications, the nonparametric Bayesian method fitted transcriptomic imputation models for 57.8% more genes over PrediXcan, thus improving the power of follow-up TWASs. We implement both parametric PrediXcan and nonparametric Bayesian methods in a convenient software tool "TIGAR" (Transcriptome-Integrated Genetic Association Resource), which imputes transcriptomic data and performs subsequent TWASs using individual-level or summary-level GWAS data.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Envejecimiento / Teorema de Bayes / Mapeo Cromosómico / Herencia Multifactorial / Polimorfismo de Nucleótido Simple / Demencia / Transcriptoma Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Am J Hum Genet Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Envejecimiento / Teorema de Bayes / Mapeo Cromosómico / Herencia Multifactorial / Polimorfismo de Nucleótido Simple / Demencia / Transcriptoma Tipo de estudio: Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Am J Hum Genet Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos