Your browser doesn't support javascript.
loading
Identification of a potent small-molecule inhibitor of bacterial DNA repair that potentiates quinolone antibiotic activity in methicillin-resistant Staphylococcus aureus.
Lim, Carine S Q; Ha, Kam Pou; Clarke, Rebecca S; Gavin, Leigh-Anne; Cook, Declan T; Hutton, Jennie A; Sutherell, Charlotte L; Edwards, Andrew M; Evans, Lindsay E; Tate, Edward W; Lanyon-Hogg, Thomas.
Afiliación
  • Lim CSQ; Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
  • Ha KP; MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London SW7 2AZ, UK.
  • Clarke RS; MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London SW7 2AZ, UK.
  • Gavin LA; Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
  • Cook DT; Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
  • Hutton JA; Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
  • Sutherell CL; Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
  • Edwards AM; MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London SW7 2AZ, UK.
  • Evans LE; Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK; MRC Centre for Molecular Bacteriology and Infection, Department of Medicine, Imperial College London, London SW7 2AZ, UK. Electronic address: l.evans@imperial.ac.uk.
  • Tate EW; Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK. Electronic address: e.tate@imperial.ac.uk.
  • Lanyon-Hogg T; Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK. Electronic address: t.lanyon-hogg@imperial.ac.uk.
Bioorg Med Chem ; 27(20): 114962, 2019 10 15.
Article en En | MEDLINE | ID: mdl-31307763
ABSTRACT
The global emergence of antibiotic resistance is one of the most serious challenges facing modern medicine. There is an urgent need for validation of new drug targets and the development of small molecules with novel mechanisms of action. We therefore sought to inhibit bacterial DNA repair mediated by the AddAB/RecBCD protein complexes as a means to sensitize bacteria to DNA damage caused by the host immune system or quinolone antibiotics. A rational, hypothesis-driven compound optimization identified IMP-1700 as a cell-active, nanomolar potency compound. IMP-1700 sensitized multidrug-resistant Staphylococcus aureus to the fluoroquinolone antibiotic ciprofloxacin, where resistance results from a point mutation in the fluoroquinolone target, DNA gyrase. Cellular reporter assays indicated IMP-1700 inhibited the bacterial SOS-response to DNA damage, and compound-functionalized Sepharose successfully pulled-down the AddAB repair complex. This work provides validation of bacterial DNA repair as a novel therapeutic target and delivers IMP-1700 as a tool molecule and starting point for therapeutic development to address the pressing challenge of antibiotic resistance.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ADN Bacteriano / Quinolonas / Bibliotecas de Moléculas Pequeñas / Staphylococcus aureus Resistente a Meticilina / Antibacterianos Tipo de estudio: Diagnostic_studies Idioma: En Revista: Bioorg Med Chem Asunto de la revista: BIOQUIMICA / QUIMICA Año: 2019 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: ADN Bacteriano / Quinolonas / Bibliotecas de Moléculas Pequeñas / Staphylococcus aureus Resistente a Meticilina / Antibacterianos Tipo de estudio: Diagnostic_studies Idioma: En Revista: Bioorg Med Chem Asunto de la revista: BIOQUIMICA / QUIMICA Año: 2019 Tipo del documento: Article País de afiliación: Reino Unido