Predicting bacterial infection outcomes using single cell RNA-sequencing analysis of human immune cells.
Nat Commun
; 10(1): 3266, 2019 07 22.
Article
en En
| MEDLINE
| ID: mdl-31332193
Complex interactions between different host immune cell types can determine the outcome of pathogen infections. Advances in single cell RNA-sequencing (scRNA-seq) allow probing of these immune interactions, such as cell-type compositions, which are then interpreted by deconvolution algorithms using bulk RNA-seq measurements. However, not all aspects of immune surveillance are represented by current algorithms. Here, using scRNA-seq of human peripheral blood cells infected with Salmonella, we develop a deconvolution algorithm for inferring cell-type specific infection responses from bulk measurements. We apply our dynamic deconvolution algorithm to a cohort of healthy individuals challenged ex vivo with Salmonella, and to three cohorts of tuberculosis patients during different stages of disease. We reveal cell-type specific immune responses associated not only with ex vivo infection phenotype but also with clinical disease stage. We propose that our approach provides a predictive power to identify risk for disease, and human infection outcomes.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Análisis de Secuencia de ARN
/
Perfilación de la Expresión Génica
/
Análisis de la Célula Individual
/
Secuenciación de Nucleótidos de Alto Rendimiento
/
Sistema Inmunológico
Tipo de estudio:
Etiology_studies
/
Incidence_studies
/
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Nat Commun
Asunto de la revista:
BIOLOGIA
/
CIENCIA
Año:
2019
Tipo del documento:
Article
País de afiliación:
Israel