Your browser doesn't support javascript.
loading
Fragment Binding Pose Predictions Using Unbiased Simulations and Markov-State Models.
Linker, Stephanie Maria; Magarkar, Aniket; Köfinger, Jürgen; Hummer, Gerhard; Seeliger, Daniel.
Afiliación
  • Linker SM; Department of Medicinal Chemistry , Boehringer Ingelheim Pharma , Birkendorfer Straße 65 , 88397 Biberach an der Riß , Germany.
  • Magarkar A; Department of Theoretical Biophysics , Max Planck Institute of Biophysics , Max-von-Laue Straße 3 , 60438 Frankfurt am Main , Germany.
  • Köfinger J; Department of Medicinal Chemistry , Boehringer Ingelheim Pharma , Birkendorfer Straße 65 , 88397 Biberach an der Riß , Germany.
  • Hummer G; Department of Theoretical Biophysics , Max Planck Institute of Biophysics , Max-von-Laue Straße 3 , 60438 Frankfurt am Main , Germany.
  • Seeliger D; Department of Theoretical Biophysics , Max Planck Institute of Biophysics , Max-von-Laue Straße 3 , 60438 Frankfurt am Main , Germany.
J Chem Theory Comput ; 15(9): 4974-4981, 2019 Sep 10.
Article en En | MEDLINE | ID: mdl-31402652
ABSTRACT
Predicting the costructure of small-molecule ligands and their respective target proteins has been a long-standing problem in drug discovery. For weak binding compounds typically identified in fragment-based screening (FBS) campaigns, determination of the correct binding site and correct binding mode is usually done experimentally via X-ray crystallography. For many targets of pharmaceutical interest, however, establishing an X-ray system which allows for sufficient throughput to support a drug discovery project is not possible. In this case, exploration of fragment hits becomes a very laborious and consequently slow process with the generation of protein/ligand cocrystal structures as the bottleneck of the entire process. In this work, we introduce a computational method which is able to reliably predict binding sites and binding modes of fragment-like small molecules using solely the structure of the apoprotein and the ligand's chemical structure as input information. The method is based on molecular dynamics simulations and Markov-state models and can be run as a fully automated protocol requiring minimal human intervention. We describe the application of the method to a representative subset of different target classes and fragments from historical FBS efforts at Boehringer Ingelheim and discuss its potential integration into the overall fragment-based drug discovery workflow.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas / Cadenas de Markov / Simulación de Dinámica Molecular Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J Chem Theory Comput Año: 2019 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Proteínas / Cadenas de Markov / Simulación de Dinámica Molecular Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J Chem Theory Comput Año: 2019 Tipo del documento: Article País de afiliación: Alemania