Your browser doesn't support javascript.
loading
Multiplexed protein force spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand factor.
Löf, Achim; Walker, Philipp U; Sedlak, Steffen M; Gruber, Sophia; Obser, Tobias; Brehm, Maria A; Benoit, Martin; Lipfert, Jan.
Afiliación
  • Löf A; Department of Physics, LMU Munich (Ludwig Maximilian University of Munich), 80799 Munich, Germany.
  • Walker PU; Center for NanoScience, LMU Munich, 80799 Munich, Germany.
  • Sedlak SM; Department of Physics, LMU Munich (Ludwig Maximilian University of Munich), 80799 Munich, Germany.
  • Gruber S; Center for NanoScience, LMU Munich, 80799 Munich, Germany.
  • Obser T; Department of Physics, LMU Munich (Ludwig Maximilian University of Munich), 80799 Munich, Germany.
  • Brehm MA; Center for NanoScience, LMU Munich, 80799 Munich, Germany.
  • Benoit M; Department of Physics, LMU Munich (Ludwig Maximilian University of Munich), 80799 Munich, Germany.
  • Lipfert J; Center for NanoScience, LMU Munich, 80799 Munich, Germany.
Proc Natl Acad Sci U S A ; 116(38): 18798-18807, 2019 09 17.
Article en En | MEDLINE | ID: mdl-31462494
Single-molecule force spectroscopy has provided unprecedented insights into protein folding, force regulation, and function. So far, the field has relied primarily on atomic force microscope and optical tweezers assays that, while powerful, are limited in force resolution, throughput, and require feedback for constant force measurements. Here, we present a modular approach based on magnetic tweezers (MT) for highly multiplexed protein force spectroscopy. Our approach uses elastin-like polypeptide linkers for the specific attachment of proteins, requiring only short peptide tags on the protein of interest. The assay extends protein force spectroscopy into the low force (<1 pN) regime and enables parallel and ultra-stable measurements at constant forces. We present unfolding and refolding data for the small, single-domain protein ddFLN4, commonly used as a molecular fingerprint in force spectroscopy, and for the large, multidomain dimeric protein von Willebrand factor (VWF) that is critically involved in primary hemostasis. For both proteins, our measurements reveal exponential force dependencies of unfolding and refolding rates. We directly resolve the stabilization of the VWF A2 domain by Ca2+ and discover transitions in the VWF C domain stem at low forces that likely constitute the first steps of VWF's mechano-activation. Probing the force-dependent lifetime of biotin-streptavidin bonds, we find that monovalent streptavidin constructs with specific attachment geometry are significantly more force stable than commercial, multivalent streptavidin. We expect our modular approach to enable multiplexed force-spectroscopy measurements for a wide range of proteins, in particular in the physiologically relevant low-force regime.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Factor de von Willebrand / Pliegue de Proteína Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2019 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Factor de von Willebrand / Pliegue de Proteína Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2019 Tipo del documento: Article País de afiliación: Alemania