Your browser doesn't support javascript.
loading
Cytochrome respiration pathway and sulphur metabolism sustain stress tolerance to low temperature in the Antarctic species Colobanthus quitensis.
Clemente-Moreno, María José; Omranian, Nooshin; Sáez, Patricia; Figueroa, Carlos María; Del-Saz, Néstor; Elso, Mhartyn; Poblete, Leticia; Orf, Isabel; Cuadros-Inostroza, Alvaro; Cavieres, Lohengrin; Bravo, León; Fernie, Alisdair; Ribas-Carbó, Miquel; Flexas, Jaume; Nikoloski, Zoran; Brotman, Yariv; Gago, Jorge.
Afiliación
  • Clemente-Moreno MJ; Research Group on Plant Biology under Mediterranean Conditions, Instituto de Agroecología y Economía del Agua (INAGEA), Universitat de les Illes Balears (UIB), cta. Valldemossa km 7,5, 07122, Palma de Mallorca, Spain.
  • Omranian N; Systems Biology and Mathematical Modeling Group, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany.
  • Sáez P; Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
  • Figueroa CM; Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, 4030000, Concepción, Chile.
  • Del-Saz N; Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, 3000, Santa Fe, Argentina.
  • Elso M; Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 4030000, Concepción, Chile.
  • Poblete L; Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, 4030000, Concepción, Chile.
  • Orf I; Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, 4030000, Concepción, Chile.
  • Cuadros-Inostroza A; Department of Life Sciences, Ben Gurion University of the Negev, 8410501, Beer Sheva, Israel.
  • Cavieres L; Metasysx GmbH, Am Mühlenberg 11, 14476, Potsdam, Germany.
  • Bravo L; ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 4030000, Concepción, Chile.
  • Fernie A; Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Cs. Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Instituto de Agroindustria, Universidad de La Frontera, Temuco, Chile.
  • Ribas-Carbó M; Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile.
  • Flexas J; Central Metabolism Group, Molecular Physiology Department, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Golm, Germany.
  • Nikoloski Z; Research Group on Plant Biology under Mediterranean Conditions, Instituto de Agroecología y Economía del Agua (INAGEA), Universitat de les Illes Balears (UIB), cta. Valldemossa km 7,5, 07122, Palma de Mallorca, Spain.
  • Brotman Y; Research Group on Plant Biology under Mediterranean Conditions, Instituto de Agroecología y Economía del Agua (INAGEA), Universitat de les Illes Balears (UIB), cta. Valldemossa km 7,5, 07122, Palma de Mallorca, Spain.
  • Gago J; Systems Biology and Mathematical Modeling Group, Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany.
New Phytol ; 225(2): 754-768, 2020 01.
Article en En | MEDLINE | ID: mdl-31489634
ABSTRACT
Understanding the strategies employed by plant species that live in extreme environments offers the possibility to discover stress tolerance mechanisms. We studied the physiological, antioxidant and metabolic responses to three temperature conditions (4, 15, and 23°C) of Colobanthus quitensis (CQ), one of the only two native vascular species in Antarctica. We also employed Dianthus chinensis (DC), to assess the effects of the treatments in a non-Antarctic species from the same family. Using fused LASSO modelling, we associated physiological and biochemical antioxidant responses with primary metabolism. This approach allowed us to highlight the metabolic pathways driving the response specific to CQ. Low temperature imposed dramatic reductions in photosynthesis (up to 88%) but not in respiration (sustaining rates of 3.0-4.2 µmol CO2  m-2  s-1 ) in CQ, and no change in the physiological stress parameters was found. Its notable antioxidant capacity and mitochondrial cytochrome respiratory activity (20 and two times higher than DC, respectively), which ensure ATP production even at low temperature, was significantly associated with sulphur-containing metabolites and polyamines. Our findings potentially open new biotechnological opportunities regarding the role of antioxidant compounds and respiratory mechanisms associated with sulphur metabolism in stress tolerance strategies to low temperature.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Estrés Fisiológico / Azufre / Frío / Caryophyllaceae / Citocromos Tipo de estudio: Prognostic_studies Idioma: En Revista: New Phytol Asunto de la revista: BOTANICA Año: 2020 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Estrés Fisiológico / Azufre / Frío / Caryophyllaceae / Citocromos Tipo de estudio: Prognostic_studies Idioma: En Revista: New Phytol Asunto de la revista: BOTANICA Año: 2020 Tipo del documento: Article País de afiliación: España