Your browser doesn't support javascript.
loading
Biologically enhanced hydrogen sulfide absorption from sour gas under haloalkaline conditions.
de Rink, Rieks; Klok, Johannes B M; van Heeringen, Gijs J; Keesman, Karel J; Janssen, Albert J H; Ter Heijne, Annemiek; Buisman, Cees J N.
Afiliación
  • de Rink R; Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, the Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, the Netherlands.
  • Klok JBM; Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, the Netherlands; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, the Netherlands.
  • van Heeringen GJ; Paqell B.V., Reactorweg 301, 3542 AD Utrecht, the Netherlands.
  • Keesman KJ; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, the Netherlands; Mathematical and Statistical methods, Wageningen University, P.O. Box 16, 6700 AA Wageningen, the Netherlands.
  • Janssen AJH; Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, the Netherlands.
  • Ter Heijne A; Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, the Netherlands. Electronic address: annemiek.terheijne@wur.nl.
  • Buisman CJN; Environmental Technology, Wageningen University, P.O. Box 17, Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, Leeuwarden, the Netherlands.
J Hazard Mater ; 383: 121104, 2020 02 05.
Article en En | MEDLINE | ID: mdl-31586887
ABSTRACT
We studied a biotechnological desulfurization process for removal of toxic hydrogen sulfide (H2S) from sour gas. The process consists of two

steps:

i) Selective absorption of H2S into a (bi)carbonate solution in the absorber column and ii) conversion of sulfide to sulfur by sulfide oxidizing bacteria (SOB) in the aerated bioreactor. In previous studies, several physico-chemical factors were assessed to explain the observed enhancement of H2S absorption in the absorber, but a full explanation was not provided. We investigated the relation between the metabolic activity of SOB and the enhancement factor. Two continuous experiments on pilot-scale were performed to determine H2S absorption efficiencies at different temperatures and biomass concentrations. The absorption efficiency improved at increasing temperatures, i.e. H2S concentration in the treated gas decreased from 715 ±â€¯265 ppmv at 25.4 °C to 69 ±â€¯25 ppmv at 39.4 °C. The opposite trend is expected when H2S absorption is solely determined by physico-chemical factors. Furthermore, increasing biomass concentrations to the absorber also resulted in decreased H2S concentrations in the treated gas, from approximately 6000 ppmv without biomass to 1664 ±â€¯126 ppmv at 44 mg N/L. From our studies it can be concluded that SOB activity enhances H2S absorption and leads to increased H2S removal efficiencies in biotechnological gas desulfurization.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Álcalis / Gases / Halógenos / Sulfuro de Hidrógeno Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2020 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Álcalis / Gases / Halógenos / Sulfuro de Hidrógeno Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2020 Tipo del documento: Article País de afiliación: Países Bajos