Your browser doesn't support javascript.
loading
CaOH Molecular Emissions in Underwater Laser-Induced Breakdown Spectroscopy: Spatial-Temporal Characteristics and Analytical Performances.
Tian, Ye; Hou, Shengyao; Wang, Lintao; Duan, Xuejiao; Xue, Boyang; Lu, Yuan; Guo, Jinjia; Li, Ying.
Afiliación
  • Tian Y; Optics and Optoelectronics Laboratory , Ocean University of China , Qingdao 266100 , People's Republic of China.
  • Hou S; Optics and Optoelectronics Laboratory , Ocean University of China , Qingdao 266100 , People's Republic of China.
  • Wang L; Optics and Optoelectronics Laboratory , Ocean University of China , Qingdao 266100 , People's Republic of China.
  • Duan X; Optics and Optoelectronics Laboratory , Ocean University of China , Qingdao 266100 , People's Republic of China.
  • Xue B; Optics and Optoelectronics Laboratory , Ocean University of China , Qingdao 266100 , People's Republic of China.
  • Lu Y; Optics and Optoelectronics Laboratory , Ocean University of China , Qingdao 266100 , People's Republic of China.
  • Guo J; Optics and Optoelectronics Laboratory , Ocean University of China , Qingdao 266100 , People's Republic of China.
  • Li Y; Optics and Optoelectronics Laboratory , Ocean University of China , Qingdao 266100 , People's Republic of China.
Anal Chem ; 91(21): 13970-13977, 2019 Nov 05.
Article en En | MEDLINE | ID: mdl-31633915
ABSTRACT
Recently, molecular emissions from the laser-induced plasma in ambient gas have gained increasing interest; however, very little is known about the case in water solutions. In this work, we investigated the spatiotemporal characteristics of molecular emissions, CaOH for instance, in underwater laser-induced breakdown spectroscopy (LIBS) by using time-resolved spectroscopy, spectral-resolved imaging, and shadowgraph techniques. It was shown that clear CaOH molecular bands can be observed in the spectrum at very early times after the laser pulse and presented a much longer lifetime and more homogeneous emission distribution compared with the Ca I and Ca II lines. Such unique characteristics of CaOH molecular emission inspired us to improve the performances of underwater LIBS by using the CaOH molecular bands instead of Ca I and Ca II lines. We demonstrated the excellent quantification results of CaOH with higher stability, less self-absorption, and reduced matrix effect. Meanwhile, the limit of detection (LOD) of Ca with the CaOH molecular band (2.46 ppm) is comparable to that with the atomic line of Ca I (2.07 ppm), and much lower than that with the ionic line of Ca II (13.81 ppm), indicating a good sensitivity of CaOH. This work gives not only some insights into the molecule formation mechanisms in underwater plasmas, but also provides new ideas to improve the analytical performances of underwater LIBS.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Anal Chem Año: 2019 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Anal Chem Año: 2019 Tipo del documento: Article