Your browser doesn't support javascript.
loading
CuII (atsm) inhibits ferroptosis: Implications for treatment of neurodegenerative disease.
Southon, Adam; Szostak, Kathryn; Acevedo, Karla M; Dent, Krista A; Volitakis, Irene; Belaidi, Abdel A; Barnham, Kevin J; Crouch, Peter J; Ayton, Scott; Donnelly, Paul S; Bush, Ashley I.
Afiliación
  • Southon A; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
  • Szostak K; School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia.
  • Acevedo KM; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
  • Dent KA; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
  • Volitakis I; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
  • Belaidi AA; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
  • Barnham KJ; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
  • Crouch PJ; Department of Pharmacology and Therapeutics, The University of Melbourne, Victoria, Australia.
  • Ayton S; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
  • Donnelly PS; School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia.
  • Bush AI; Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
Br J Pharmacol ; 177(3): 656-667, 2020 02.
Article en En | MEDLINE | ID: mdl-31655003
BACKGROUND AND PURPOSE: Diacetyl-bis(4-methyl-3-thiosemicarbazonato)copperII (CuII (atsm)) ameliorates neurodegeneration and delays disease progression in mouse models of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD), yet the mechanism of action remains uncertain. Promising results were recently reported for separate Phase 1 studies in ALS patients and PD patients. Affected tissue in these disorders shares features of elevated Fe, low glutathione and increased lipid peroxidation consistent with ferroptosis, a novel form of regulated cell death. We therefore evaluated the ability of CuII (atsm) to inhibit ferroptosis. EXPERIMENTAL APPROACH: Ferroptosis was induced in neuronal cell models by inhibition of glutathione peroxidase-4 activity with RSL3 or by blocking cystine uptake with erastin. Cell viability and lipid peroxidation were assessed and the efficacy of CuII (atsm) was compared to the known antiferroptotic compound liproxstatin-1. KEY RESULTS: CuII (atsm) protected against lipid peroxidation and ferroptotic lethality in primary and immortalised neuronal cell models (EC50 : ≈130 nM, within an order of magnitude of liproxstatin-1). NiII (atsm) also prevented ferroptosis with similar potency, whereas ionic CuII did not. In cell-free systems, CuII (atsm) and NiII (atsm) inhibited FeII -induced lipid peroxidation, consistent with these compounds quenching lipid radicals. CONCLUSIONS AND IMPLICATIONS: The antiferroptotic activity of CuII (atsm) could therefore be the disease-modifying mechanism being tested in ALS and PD trials. With potency in vitro approaching that of liproxstatin-1, CuII (atsm) possesses favourable properties such as oral bioavailability and entry into the brain that make it an attractive investigational product for clinical trials of ferroptosis-related diseases.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Compuestos Organometálicos / Tiosemicarbazonas / Enfermedades Neurodegenerativas / Ferroptosis / Esclerosis Amiotrófica Lateral Límite: Animals / Humans Idioma: En Revista: Br J Pharmacol Año: 2020 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Compuestos Organometálicos / Tiosemicarbazonas / Enfermedades Neurodegenerativas / Ferroptosis / Esclerosis Amiotrófica Lateral Límite: Animals / Humans Idioma: En Revista: Br J Pharmacol Año: 2020 Tipo del documento: Article País de afiliación: Australia