Your browser doesn't support javascript.
loading
Nuclear halo measurements for accurate prediction of field size factor in a Varian ProBeam proton PBS system.
Harms, Joseph; Chang, Chih-Wei; Zhang, Rongxiao; Lin, Liyong.
Afiliación
  • Harms J; Department of Radiation Oncology, Emory University, Atlanta, GA, USA.
  • Chang CW; Department of Radiation Oncology, Emory University, Atlanta, GA, USA.
  • Zhang R; Department of Radiation Oncology, Emory University, Atlanta, GA, USA.
  • Lin L; Department of Radiation Oncology, Dartmouth University, Hanover, NH, USA.
J Appl Clin Med Phys ; 21(1): 197-204, 2020 Jan.
Article en En | MEDLINE | ID: mdl-31793202
ABSTRACT

PURPOSE:

For pencil-beam scanning proton therapy systems, in-air non-Gaussian halo can significantly impact output at small field sizes and low energies. Since the low-intensity tail of spot profile (halo) is not necessarily modeled in treatment planning systems (TPSs), this can potentially lead to significant differences in patient dose distribution. In this work, we report such impact for a Varian ProBeam system.

METHODS:

We use a pair magnification technique to measure two-dimensional (2D) spot profiles of protons from 70 to 242 MeV at the treatment isocenter and 30 cm upstream of the isocenter. Measurements are made with both Gafchromic film and a scintillator detector coupled to a CCD camera (IBA Lynx). Spot profiles are measured down to 0.01% of their maximum intensity. Field size factors (FSFs) are compared among calculation using measured 2D profiles, calculation using a clinical treatment planning algorithm (Raystation 8A clinical Monte Carlo), and a CC04 small-volume ion chamber. FSFs were measured for square fields of proton energies ranging from 70 to 242 MeV.

RESULTS:

All film and Lynx measurements agree within 1 mm for full width at half maximum beam intensity. The measured radial spot profiles disagree with simple Gaussian approximations, which are used for modeling in the TPS. FSF measurements show the magnitude of disagreements between beam output in reality and in the TPS without modeling halo. We found that the clinical TPS overestimated output by as much as 6% for small field sizes of 2 cm at the lowest energy of 70 MeV while the film and Lynx measurements agreed within 4% and 1%, respectively, for this FSF.

CONCLUSIONS:

If the in-air halo for low-energy proton beams is not fully modeled by the TPS, this could potentially lead to under-dosing small, shallow treatment volumes in PBS treatment plans.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Planificación de la Radioterapia Asistida por Computador / Terapia de Protones Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J Appl Clin Med Phys Asunto de la revista: BIOFISICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Algoritmos / Planificación de la Radioterapia Asistida por Computador / Terapia de Protones Tipo de estudio: Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: J Appl Clin Med Phys Asunto de la revista: BIOFISICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos