Your browser doesn't support javascript.
loading
Incorporating connectivity into conservation planning for the optimal representation of multiple species and ecosystem services.
Williams, Sara H; Scriven, Sarah A; Burslem, David F R P; Hill, Jane K; Reynolds, Glen; Agama, Agnes L; Kugan, Frederick; Maycock, Colin R; Khoo, Eyen; Hastie, Alexander Y L; Sugau, John B; Nilus, Reuben; Pereira, Joan T; Tsen, Sandy L T; Lee, Leung Y; Juiling, Suzika; Hodgson, Jenny A; Cole, Lydia E S; Asner, Gregory P; Evans, Luke J; Brodie, Jedediah F.
Afiliación
  • Williams SH; Division of Biological Sciences and Wildlife Biology Program, University of Montana, Missoula, MT, 59812, U.S.A.
  • Scriven SA; Department of Biology, University of York, York, YO10 5DD, U.K.
  • Burslem DFRP; School of Biological Sciences, University of Aberdeen, Cruickshank Building, Aberdeen, AB24 3UU, U.K.
  • Hill JK; Department of Biology, University of York, York, YO10 5DD, U.K.
  • Reynolds G; South East Asia Rainforest Research Partnership, 88400, Kota Kinabalu, Sabah, Malaysia.
  • Agama AL; South East Asia Rainforest Research Partnership, 88400, Kota Kinabalu, Sabah, Malaysia.
  • Kugan F; Sabah Forestry Department, P.O. Box 1407, 90715, Sandakan, Sabah, Malaysia.
  • Maycock CR; International Tropical Forestry, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
  • Khoo E; Forest Research Centre, Sabah Forestry Department, P.O. Box 1407, 90715, Sandakan, Sabah, Malaysia.
  • Hastie AYL; Forest Research Centre, Sabah Forestry Department, P.O. Box 1407, 90715, Sandakan, Sabah, Malaysia.
  • Sugau JB; Forest Research Centre, Sabah Forestry Department, P.O. Box 1407, 90715, Sandakan, Sabah, Malaysia.
  • Nilus R; Forest Research Centre, Sabah Forestry Department, P.O. Box 1407, 90715, Sandakan, Sabah, Malaysia.
  • Pereira JT; Forest Research Centre, Sabah Forestry Department, P.O. Box 1407, 90715, Sandakan, Sabah, Malaysia.
  • Tsen SLT; International Tropical Forestry, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
  • Lee LY; International Tropical Forestry, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
  • Juiling S; International Tropical Forestry, Faculty of Science and Natural Resources, Universiti Malaysia, Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
  • Hodgson JA; Institute of Integrative Biology, University of Liverpool, Liverpool, Crown Street, Liverpool, L69 7ZB, U.K.
  • Cole LES; Institute of Integrative Biology, University of Liverpool, Liverpool, Crown Street, Liverpool, L69 7ZB, U.K.
  • Asner GP; Center for Global Discovery and Conservation Science, The Biodesign Institute C, Arizona State University, 1001 S. McAllister Ave., P.O. Box 878001, Tempe, AZ, 85287, U.S.A.
  • Evans LJ; Center for Global Discovery and Conservation Science, The Biodesign Institute C, Arizona State University, 1001 S. McAllister Ave., P.O. Box 878001, Tempe, AZ, 85287, U.S.A.
  • Brodie JF; Division of Biological Sciences and Wildlife Biology Program, University of Montana, Missoula, MT, 59812, U.S.A.
Conserv Biol ; 34(4): 934-942, 2020 08.
Article en En | MEDLINE | ID: mdl-31840279
ABSTRACT
Conservation planning tends to focus on protecting species' ranges or landscape connectivity but seldom both-particularly in the case of diverse taxonomic assemblages and multiple planning goals. Therefore, information on potential trade-offs between maintaining landscape connectivity and achieving other conservation objectives is lacking. We developed an optimization approach to prioritize the maximal protection of species' ranges, ecosystem types, and forest carbon stocks, while also including habitat connectivity for range-shifting species and dispersal corridors to link protected area. We applied our approach to Sabah, Malaysia, where the state government mandated an increase in protected-area coverage of approximately 305,000 ha but did not specify where new protected areas should be. Compared with a conservation planning approach that did not incorporate the 2 connectivity features, our approach increased the protection of dispersal corridors and elevational connectivity by 13% and 21%, respectively. Coverage of vertebrate and plant species' ranges and forest types were the same whether connectivity was included or excluded. Our approach protected 2% less forest carbon and 3% less butterfly range than when connectivity features were not included. Hence, the inclusion of connectivity into conservation planning can generate large increases in the protection of landscape connectivity with minimal loss of representation of other conservation targets.
RESUMEN
Incorporación de la Conectividad a la Planeación de la Conservación para la Representación Óptima de Especies Múltiples y Servicios Ambientales Resumen Las tendencias de planeación de la conservación tienden a enfocarse en la protección de la distribución geográfica de las especies o en la conectividad de paisajes, pero rara vez se enfocan en ambas - particularmente para el caso de los ensamblajes taxonómicos y las metas múltiples de planeación. Por lo tanto, hay carencias en la información sobre las compensaciones potenciales entre mantener la conectividad de los paisajes y alcanzar otros objetivos de conservación. Desarrollamos una estrategia de optimización para priorizar la protección máxima de la distribución de las especies, los tipos de ecosistemas y los stocks de carbono de los bosques, a la vez que incluimos la conectividad del hábitat para las especies que modifican su distribución y los corredores de dispersión para conectar el área protegida. Aplicamos nuestra estrategia en Sabah, Malasia, en donde el gobierno estatal ordenó un incremento de ∼305, 000 ha en la cobertura de áreas protegidas sin especificar la ubicación de las nuevas áreas protegidas. En comparación con una estrategia de planeación de la conservación que no incorporó las dos características de la conectividad, nuestra estrategia incrementó la protección de los corredores de dispersión y la conectividad altitudinal en un 13% y 21% respectivamente. La cobertura de la distribución de las especies de plantas y vertebrados y de los tipos de bosque fue la misma con o sin la inclusión de la conectividad. Nuestra estrategia protegió 2% menos del carbono forestal y 3% menos de la distribución de mariposas que cuando no se incluyeron las características de conectividad en la estrategia. Por lo tanto, incluir a la conectividad en la planeación de la conservación puede generar grandes incrementos en la protección de la conectividad del paisaje con una pérdida mínima de representación para los demás objetivos de conservación.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ecosistema / Conservación de los Recursos Naturales Límite: Animals País/Región como asunto: Asia Idioma: En Revista: Conserv Biol Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ecosistema / Conservación de los Recursos Naturales Límite: Animals País/Región como asunto: Asia Idioma: En Revista: Conserv Biol Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos