Your browser doesn't support javascript.
loading
Human genetics and neuropathology suggest a link between miR-218 and amyotrophic lateral sclerosis pathophysiology.
Reichenstein, Irit; Eitan, Chen; Diaz-Garcia, Sandra; Haim, Guy; Magen, Iddo; Siany, Aviad; Hoye, Mariah L; Rivkin, Natali; Olender, Tsviya; Toth, Beata; Ravid, Revital; Mandelbaum, Amitai D; Yanowski, Eran; Liang, Jing; Rymer, Jeffrey K; Levy, Rivka; Beck, Gilad; Ainbinder, Elena; Farhan, Sali M K; Lennox, Kimberly A; Bode, Nicole M; Behlke, Mark A; Möller, Thomas; Saxena, Smita; Moreno, Cristiane A M; Costaguta, Giancarlo; van Eijk, Kristel R; Phatnani, Hemali; Al-Chalabi, Ammar; Basak, A Nazli; van den Berg, Leonard H; Hardiman, Orla; Landers, John E; Mora, Jesus S; Morrison, Karen E; Shaw, Pamela J; Veldink, Jan H; Pfaff, Samuel L; Yizhar, Ofer; Gross, Christina; Brown, Robert H; Ravits, John M; Harms, Matthew B; Miller, Timothy M; Hornstein, Eran.
Afiliación
  • Reichenstein I; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Eitan C; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Diaz-Garcia S; Project MinE ALS Sequencing Consortium.
  • Haim G; Department of Neurosciences, UC San Diego, La Jolla, CA 92093, USA.
  • Magen I; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Siany A; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Hoye ML; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Rivkin N; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
  • Olender T; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Toth B; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Ravid R; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Mandelbaum AD; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Yanowski E; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Liang J; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Rymer JK; Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Levy R; Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
  • Beck G; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
  • Ainbinder E; Department of Neurobiology, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Farhan SMK; Stem Cell Core and Advanced Cell Technologies Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Lennox KA; Stem Cell Core and Advanced Cell Technologies Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel.
  • Bode NM; Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
  • Behlke MA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  • Möller T; Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA.
  • Saxena S; Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA.
  • Moreno CAM; Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA.
  • Costaguta G; Department of Neurology, School of Medicine, University of Washington, Seattle, WA 98195, USA.
  • van Eijk KR; Department of Neurology, Inselspital University Hospital, University of Bern, Freiburgstrasse 16, CH-3010 Bern, Bern, Switzerland.
  • Phatnani H; Department for BioMedical Research, University of Bern, Murtenstrasse 40, CH-3008 Bern, Switzerland.
  • Al-Chalabi A; Department of Neurology, Columbia University, New York, NY 10032, USA.
  • Basak AN; Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
  • van den Berg LH; Project MinE ALS Sequencing Consortium.
  • Hardiman O; Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands.
  • Landers JE; Center for Genomics of Neurodegenerative Disease (CGND) and New York Genome Center (NYGC) ALS Consortium, New York, NY 10013, USA.
  • Mora JS; Project MinE ALS Sequencing Consortium.
  • Morrison KE; Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute, Department of Basic and Clinical Neuroscience, Department of Neurology, King's College London, London SE5 9RX, UK.
  • Shaw PJ; Department of Neurology, King's College Hospital, London SE5 9RS, UK.
  • Veldink JH; Project MinE ALS Sequencing Consortium.
  • Pfaff SL; Koç University Translational Medicine Research Center, NDAL, Istanbul 34010, Turkey.
  • Yizhar O; Project MinE ALS Sequencing Consortium.
  • Gross C; Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, 3584 CG, The Netherlands.
  • Brown RH; Project MinE ALS Sequencing Consortium.
  • Ravits JM; Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin 2, Republic of Ireland.
  • Harms MB; Department of Neurology, Beaumont Hospital, Dublin 2, Republic of Ireland.
  • Miller TM; Project MinE ALS Sequencing Consortium.
  • Hornstein E; Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
Sci Transl Med ; 11(523)2019 12 18.
Article en En | MEDLINE | ID: mdl-31852800
ABSTRACT
Motor neuron-specific microRNA-218 (miR-218) has recently received attention because of its roles in mouse development. However, miR-218 relevance to human motor neuron disease was not yet explored. Here, we demonstrate by neuropathology that miR-218 is abundant in healthy human motor neurons. However, in amyotrophic lateral sclerosis (ALS) motor neurons, miR-218 is down-regulated and its mRNA targets are reciprocally up-regulated (derepressed). We further identify the potassium channel Kv10.1 as a new miR-218 direct target that controls neuronal activity. In addition, we screened thousands of ALS genomes and identified six rare variants in the human miR-218-2 sequence. miR-218 gene variants fail to regulate neuron activity, suggesting the importance of this small endogenous RNA for neuronal robustness. The underlying mechanisms involve inhibition of miR-218 biogenesis and reduced processing by DICER. Therefore, miR-218 activity in motor neurons may be susceptible to failure in human ALS, suggesting that miR-218 may be a potential therapeutic target in motor neuron disease.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: MicroARNs / Neuropatología / Esclerosis Amiotrófica Lateral Límite: Animals / Humans Idioma: En Revista: Sci Transl Med Asunto de la revista: CIENCIA / MEDICINA Año: 2019 Tipo del documento: Article País de afiliación: Israel

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: MicroARNs / Neuropatología / Esclerosis Amiotrófica Lateral Límite: Animals / Humans Idioma: En Revista: Sci Transl Med Asunto de la revista: CIENCIA / MEDICINA Año: 2019 Tipo del documento: Article País de afiliación: Israel