Your browser doesn't support javascript.
loading
Adaptor protein complex 4 deficiency: a paradigm of childhood-onset hereditary spastic paraplegia caused by defective protein trafficking.
Behne, Robert; Teinert, Julian; Wimmer, Miriam; D'Amore, Angelica; Davies, Alexandra K; Scarrott, Joseph M; Eberhardt, Kathrin; Brechmann, Barbara; Chen, Ivy Pin-Fang; Buttermore, Elizabeth D; Barrett, Lee; Dwyer, Sean; Chen, Teresa; Hirst, Jennifer; Wiesener, Antje; Segal, Devorah; Martinuzzi, Andrea; Duarte, Sofia T; Bennett, James T; Bourinaris, Thomas; Houlden, Henry; Roubertie, Agathe; Santorelli, Filippo M; Robinson, Margaret; Azzouz, Mimoun; Lipton, Jonathan O; Borner, Georg H H; Sahin, Mustafa; Ebrahimi-Fakhari, Darius.
Afiliación
  • Behne R; Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Teinert J; Department of Neurology, University Hospital Würzburg, 97080 Würzburg, Germany.
  • Wimmer M; Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • D'Amore A; Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany.
  • Davies AK; Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Scarrott JM; Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Eberhardt K; Molecular Medicine, IRCCS Fondazione Stella Maris, 56018 Pisa, Italy.
  • Brechmann B; Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK.
  • Chen IP; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
  • Buttermore ED; Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK.
  • Barrett L; Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Dwyer S; Department of Neurology, The F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Chen T; Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Hirst J; Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Wiesener A; Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Segal D; Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Martinuzzi A; Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Duarte ST; Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK.
  • Bennett JT; Institute of Human Genetics, Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
  • Bourinaris T; Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York City, NY 10021, USA.
  • Houlden H; Scientific Institute, IRCCS E. Medea, Unità Operativa Conegliano, 31015 Treviso, Italy.
  • Roubertie A; Department of Pediatric Neurology, Centro Hospitalar de Lisboa Central, 1169-050 Lisbon, Portugal.
  • Santorelli FM; Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.
  • Robinson M; Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1E 6BT, UK.
  • Azzouz M; Department of Molecular Neuroscience, UCL Institute of Neurology, London WC1E 6BT, UK.
  • Lipton JO; Pediatric Neurology, CHU Montpellier, 34295 Montpellier, France.
  • Borner GHH; Molecular Medicine, IRCCS Fondazione Stella Maris, 56018 Pisa, Italy.
  • Sahin M; Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK.
  • Ebrahimi-Fakhari D; Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield S10 2HQ, UK.
Hum Mol Genet ; 29(2): 320-334, 2020 01 15.
Article en En | MEDLINE | ID: mdl-31915823
ABSTRACT
Deficiency of the adaptor protein complex 4 (AP-4) leads to childhood-onset hereditary spastic paraplegia (AP-4-HSP) SPG47 (AP4B1), SPG50 (AP4M1), SPG51 (AP4E1) and SPG52 (AP4S1). This study aims to evaluate the impact of loss-of-function variants in AP-4 subunits on intracellular protein trafficking using patient-derived cells. We investigated 15 patient-derived fibroblast lines and generated six lines of induced pluripotent stem cell (iPSC)-derived neurons covering a wide range of AP-4 variants. All patient-derived fibroblasts showed reduced levels of the AP4E1 subunit, a surrogate for levels of the AP-4 complex. The autophagy protein ATG9A accumulated in the trans-Golgi network and was depleted from peripheral compartments. Western blot analysis demonstrated a 3-5-fold increase in ATG9A expression in patient lines. ATG9A was redistributed upon re-expression of AP4B1 arguing that mistrafficking of ATG9A is AP-4-dependent. Examining the downstream effects of ATG9A mislocalization, we found that autophagic flux was intact in patient-derived fibroblasts both under nutrient-rich conditions and when autophagy is stimulated. Mitochondrial metabolism and intracellular iron content remained unchanged. In iPSC-derived cortical neurons from patients with AP4B1-associated SPG47, AP-4 subunit levels were reduced while ATG9A accumulated in the trans-Golgi network. Levels of the autophagy marker LC3-II were reduced, suggesting a neuron-specific alteration in autophagosome turnover. Neurite outgrowth and branching were reduced in AP-4-HSP neurons pointing to a role of AP-4-mediated protein trafficking in neuronal development. Collectively, our results establish ATG9A mislocalization as a key marker of AP-4 deficiency in patient-derived cells, including the first human neuron model of AP-4-HSP, which will aid diagnostic and therapeutic studies.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Paraplejía Espástica Hereditaria / Red trans-Golgi / Transporte de Proteínas / Proteínas de Transporte Vesicular / Complejo 4 de Proteína Adaptadora / Proteínas Relacionadas con la Autofagia / Proteínas de la Membrana Límite: Adolescent / Child / Child, preschool / Female / Humans / Male Idioma: En Revista: Hum Mol Genet Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Paraplejía Espástica Hereditaria / Red trans-Golgi / Transporte de Proteínas / Proteínas de Transporte Vesicular / Complejo 4 de Proteína Adaptadora / Proteínas Relacionadas con la Autofagia / Proteínas de la Membrana Límite: Adolescent / Child / Child, preschool / Female / Humans / Male Idioma: En Revista: Hum Mol Genet Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos