Your browser doesn't support javascript.
loading
Flow-Induced Symmetry Breaking in Growing Bacterial Biofilms.
Pearce, Philip; Song, Boya; Skinner, Dominic J; Mok, Rachel; Hartmann, Raimo; Singh, Praveen K; Jeckel, Hannah; Oishi, Jeffrey S; Drescher, Knut; Dunkel, Jörn.
Afiliación
  • Pearce P; Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA.
  • Song B; Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA.
  • Skinner DJ; Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA.
  • Mok R; Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA.
  • Hartmann R; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA.
  • Singh PK; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
  • Jeckel H; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
  • Oishi JS; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
  • Drescher K; Department of Physics, Philipps-Universität Marburg, 35043 Marburg, Germany.
  • Dunkel J; Department of Mathematics, Massachusetts Institute of Technology, Cambridge Massachusetts 02139-4307, USA.
Phys Rev Lett ; 123(25): 258101, 2019 Dec 20.
Article en En | MEDLINE | ID: mdl-31922766
Bacterial biofilms represent a major form of microbial life on Earth and serve as a model active nematic system, in which activity results from growth of the rod-shaped bacterial cells. In their natural environments, ranging from human organs to industrial pipelines, biofilms have evolved to grow robustly under significant fluid shear. Despite intense practical and theoretical interest, it is unclear how strong fluid flow alters the local and global architectures of biofilms. Here, we combine highly time-resolved single-cell live imaging with 3D multiscale modeling to investigate the mechanisms by which flow affects the dynamics of all individual cells in growing biofilms. Our experiments and cell-based simulations reveal three quantitatively different growth phases in strong external flow and the transitions between them. In the initial stages of biofilm development, flow induces a downstream gradient in cell orientation, causing asymmetrical dropletlike biofilm shapes. In the later developmental stages, when the majority of cells are sheltered from the flow by the surrounding extracellular matrix, buckling-induced cell verticalization in the biofilm core restores radially symmetric biofilm growth, in agreement with predictions of a 3D continuum model.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Vibrio cholerae / Biopelículas / Modelos Biológicos Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev Lett Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Vibrio cholerae / Biopelículas / Modelos Biológicos Tipo de estudio: Prognostic_studies Idioma: En Revista: Phys Rev Lett Año: 2019 Tipo del documento: Article País de afiliación: Estados Unidos