Quantum dots functionalized with gH625 attenuate QDs oxidative stress and lethality in Caenorhabditis elegans: a model system.
Ecotoxicology
; 29(2): 156-162, 2020 Mar.
Article
en En
| MEDLINE
| ID: mdl-31927676
Nanomaterials have revolutionized many scientific fields and are widely applied to address environmental problems and to develop novel health care strategies. However, their mechanism of action is still poorly understood. Several nanomaterials for medical applications are based on quantum dots (QDs). Despite their amazing physico-chemical properties, quantum dots display significant adverse effects. In the present study, the effects of QDs on the motor nervous system of nematodes Caenorhabditis elegans have been investigated as a non-mammalian alternative model. We also explored the possibility of modifying the toxicity of QDs by coating with a cell-penetrating peptide gH625 and thus we analysed the effects determined by QDs-gH625 complexes on the nematodes. With this work, we have demonstrated, by in vivo experiments, that the peptide gH625 is able to reduce the side effects of metallic nanoparticle making them more suitable for medical applications.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Caenorhabditis elegans
/
Estrés Oxidativo
/
Puntos Cuánticos
Límite:
Animals
Idioma:
En
Revista:
Ecotoxicology
Asunto de la revista:
SAUDE AMBIENTAL
/
TOXICOLOGIA
Año:
2020
Tipo del documento:
Article
País de afiliación:
Italia