Your browser doesn't support javascript.
loading
RGS Proteins as Critical Regulators of Motor Function and Their Implications in Parkinson's Disease.
Ahlers-Dannen, Katelin E; Spicer, Mackenzie M; Fisher, Rory A.
Afiliación
  • Ahlers-Dannen KE; Department of Neuroscience and Pharmacology (K.E.A.-D., M.M.S., R.A.F.), Iowa Neuroscience Institute (R.A.F.), and Interdisciplinary Graduate Program in Molecular Medicine (M.M.S., R.A.F.), University of Iowa Carver College of Medicine, Iowa City, Iowa.
  • Spicer MM; Department of Neuroscience and Pharmacology (K.E.A.-D., M.M.S., R.A.F.), Iowa Neuroscience Institute (R.A.F.), and Interdisciplinary Graduate Program in Molecular Medicine (M.M.S., R.A.F.), University of Iowa Carver College of Medicine, Iowa City, Iowa.
  • Fisher RA; Department of Neuroscience and Pharmacology (K.E.A.-D., M.M.S., R.A.F.), Iowa Neuroscience Institute (R.A.F.), and Interdisciplinary Graduate Program in Molecular Medicine (M.M.S., R.A.F.), University of Iowa Carver College of Medicine, Iowa City, Iowa rory-fisher@uiowa.edu.
Mol Pharmacol ; 98(6): 730-738, 2020 12.
Article en En | MEDLINE | ID: mdl-32015009
ABSTRACT
Parkinson disease (PD) is a devastating, largely nonfamilial, age-related disorder caused by the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Release of DA from these neurons into the dorsal striatum is crucial for regulating movement and their loss causes PD. Unfortunately, the mechanisms underlying SNc neurodegeneration remain unclear, and currently there is no cure for PD, only symptomatic treatments. Recently, several regulator of G protein signaling (RGS) proteins have emerged as critical modulators of PD pathogenesis and/or motor dysfunction and dyskinesia RGSs 4, 6, 9, and 10. Striatal RGS4 has been shown to exacerbate motor symptoms of DA loss by suppressing M4-autoreceptor-Gα i/o signaling in striatal cholinergic interneurons. RGS6 and RGS9 are key regulators of D2R-Gα i/o signaling in SNc DA neurons and striatal medium spiny neurons, respectively. RGS6, expressed in human and mouse SNc DA neurons, suppresses characteristic PD hallmarks in aged mice, including SNc DA neuron loss, motor deficits, and α-synuclein accumulation. After DA depletion, RGS9 (through its inhibition of medium spiny neuron D2R signaling) suppresses motor dysfunction induced by L-DOPA or D2R-selective agonists. RGS10 is highly expressed in microglia, the brain's resident immune cells. Within the SNc, RGS10 may promote DA neuron survival through the upregulation of prosurvival genes and inhibition of microglial inflammatory factor expression. Thus, RGSs 4, 6, 9, and 10 are critical modulators of cell signaling pathways that promote SNc DA neuron survival and/or proper motor control. Accordingly, these RGS proteins represent novel therapeutic targets for the treatment of PD pathology. SIGNIFICANCE STATEMENT Parkinson disease (PD), the most common movement disorder, is a progressive neurodegenerative disease characterized by substantia nigra pars compacta (SNc) dopamine (DA) neuron loss and subsequent motor deficits. Current PD therapies only target disease motor symptomology and are fraught with side effects. Therefore, researchers have begun to explore alternative therapeutic options. Regulator of G protein signaling (RGS) proteins, whether primarily expressed in SNc DA neurons (RGS6), striatal neurons (RGSs 4 and 9), or microglia (RGS10), modulate key signaling pathways important for SNc DA neuron survival and/or proper motor control. As such, RGS proteins represent novel therapeutic targets in PD.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Proteínas RGS / Porción Compacta de la Sustancia Negra / Actividad Motora / Degeneración Nerviosa Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Mol Pharmacol Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Enfermedad de Parkinson / Proteínas RGS / Porción Compacta de la Sustancia Negra / Actividad Motora / Degeneración Nerviosa Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Mol Pharmacol Año: 2020 Tipo del documento: Article