Your browser doesn't support javascript.
loading
A computational model for grid maps in neural populations.
Anselmi, Fabio; Murray, Micah M; Franceschiello, Benedetta.
Afiliación
  • Anselmi F; Center for Brains, Minds, and Machines, MIT, Cambridge, MA, USA. anselmi@mit.edu.
  • Murray MM; Laboratory for Computational and Statistical Learning (LCSL) and IIT, Genova, Italy. anselmi@mit.edu.
  • Franceschiello B; Center for Neuroscience and Artificial Intelligence Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA. anselmi@mit.edu.
J Comput Neurosci ; 48(2): 149-159, 2020 05.
Article en En | MEDLINE | ID: mdl-32125562
Grid cells in the entorhinal cortex, together with head direction, place, speed and border cells, are major contributors to the organization of spatial representations in the brain. In this work we introduce a novel theoretical and algorithmic framework able to explain the optimality of hexagonal grid-like response patterns. We show that this pattern is a result of minimal variance encoding of neurons together with maximal robustness to neurons' noise and minimal number of encoding neurons. The novelty lies in the formulation of the encoding problem considering neurons as an overcomplete basis (a frame) where the position information is encoded. Through the modern Frame Theory language, specifically that of tight and equiangular frames, we provide new insights about the optimality of hexagonal grid receptive fields. The proposed model is based on the well-accepted and tested hypothesis of Hebbian learning, providing a simplified cortical-based framework that does not require the presence of velocity-driven oscillations (oscillatory model) or translational symmetries in the synaptic connections (attractor model). We moreover demonstrate that the proposed encoding mechanism naturally explains axis alignment of neighbor grid cells and maps shifts, rotations and scaling of the stimuli onto the shape of grid cells' receptive fields, giving a straightforward explanation of the experimental evidence of grid cells remapping under transformations of environmental cues.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Percepción Espacial / Corteza Entorrinal / Neuronas Límite: Animals Idioma: En Revista: J Comput Neurosci Asunto de la revista: INFORMATICA MEDICA / NEUROLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Percepción Espacial / Corteza Entorrinal / Neuronas Límite: Animals Idioma: En Revista: J Comput Neurosci Asunto de la revista: INFORMATICA MEDICA / NEUROLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos