Your browser doesn't support javascript.
loading
CRISPR/Cas9 recombineering-mediated deep mutational scanning of essential genes in Escherichia coli.
Choudhury, Alaksh; Fenster, Jacob A; Fankhauser, Reilly G; Kaar, Joel L; Tenaillon, Olivier; Gill, Ryan T.
Afiliación
  • Choudhury A; Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.
  • Fenster JA; IAME, INSERM, Université de Paris, Paris, France.
  • Fankhauser RG; Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.
  • Kaar JL; Renewable & Sustainable Energy Institute, University of Colorado, Boulder, CO, USA.
  • Tenaillon O; Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.
  • Gill RT; IAME, INSERM, Université de Paris, Paris, France.
Mol Syst Biol ; 16(3): e9265, 2020 03.
Article en En | MEDLINE | ID: mdl-32175691
ABSTRACT
Deep mutational scanning can provide significant insights into the function of essential genes in bacteria. Here, we developed a high-throughput method for mutating essential genes of Escherichia coli in their native genetic context. We used Cas9-mediated recombineering to introduce a library of mutations, created by error-prone PCR, within a gene fragment on the genome using a single gRNA pre-validated for high efficiency. Tracking mutation frequency through deep sequencing revealed biases in the position and the number of the introduced mutations. We overcame these biases by increasing the homology arm length and blocking mismatch repair to achieve a mutation efficiency of 85% for non-essential genes and 55% for essential genes. These experiments also improved our understanding of poorly characterized recombineering process using dsDNA donors with single nucleotide changes. Finally, we applied our technology to target rpoB, the beta subunit of RNA polymerase, to study resistance against rifampicin. In a single experiment, we validate multiple biochemical and clinical observations made in the previous decades and provide insights into resistance compensation with the study of double mutants.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ingeniería Genética / Genes Esenciales / Escherichia coli / Mutación Idioma: En Revista: Mol Syst Biol Asunto de la revista: BIOLOGIA MOLECULAR / BIOTECNOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Ingeniería Genética / Genes Esenciales / Escherichia coli / Mutación Idioma: En Revista: Mol Syst Biol Asunto de la revista: BIOLOGIA MOLECULAR / BIOTECNOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos