Your browser doesn't support javascript.
loading
A stable covalent organic framework for photocatalytic carbon dioxide reduction.
Fu, Zhiwei; Wang, Xiaoyan; Gardner, Adrian M; Wang, Xue; Chong, Samantha Y; Neri, Gaia; Cowan, Alexander J; Liu, Lunjie; Li, Xiaobo; Vogel, Anastasia; Clowes, Rob; Bilton, Matthew; Chen, Linjiang; Sprick, Reiner Sebastian; Cooper, Andrew I.
Afiliación
  • Fu Z; Department of Chemistry and Materials Innovation Factory , University of Liverpool , 51 Oxford Street , Liverpool L7 3NY , UK . Email: ssprick@liverpool.ac.uk ; Email: aicooper@liverpool.ac.uk ; Email: lchen@liverpool.ac.uk.
  • Wang X; Department of Chemistry and Materials Innovation Factory , University of Liverpool , 51 Oxford Street , Liverpool L7 3NY , UK . Email: ssprick@liverpool.ac.uk ; Email: aicooper@liverpool.ac.uk ; Email: lchen@liverpool.ac.uk.
  • Gardner AM; Stephenson Institute for Renewable Energy , University of Liverpool , Chadwick Building, Peach Street , Liverpool L69 7ZF , UK.
  • Wang X; Department of Chemistry and Materials Innovation Factory , University of Liverpool , 51 Oxford Street , Liverpool L7 3NY , UK . Email: ssprick@liverpool.ac.uk ; Email: aicooper@liverpool.ac.uk ; Email: lchen@liverpool.ac.uk.
  • Chong SY; Leverhulme Research Centre for Functional Materials Design , Materials Innovation Factory and Department of Chemistry , University of Liverpool , Oxford Street , Liverpool L7 3NY , UK.
  • Neri G; Department of Chemistry and Materials Innovation Factory , University of Liverpool , 51 Oxford Street , Liverpool L7 3NY , UK . Email: ssprick@liverpool.ac.uk ; Email: aicooper@liverpool.ac.uk ; Email: lchen@liverpool.ac.uk.
  • Cowan AJ; Stephenson Institute for Renewable Energy , University of Liverpool , Chadwick Building, Peach Street , Liverpool L69 7ZF , UK.
  • Liu L; Stephenson Institute for Renewable Energy , University of Liverpool , Chadwick Building, Peach Street , Liverpool L69 7ZF , UK.
  • Li X; Department of Chemistry and Materials Innovation Factory , University of Liverpool , 51 Oxford Street , Liverpool L7 3NY , UK . Email: ssprick@liverpool.ac.uk ; Email: aicooper@liverpool.ac.uk ; Email: lchen@liverpool.ac.uk.
  • Vogel A; Department of Chemistry and Materials Innovation Factory , University of Liverpool , 51 Oxford Street , Liverpool L7 3NY , UK . Email: ssprick@liverpool.ac.uk ; Email: aicooper@liverpool.ac.uk ; Email: lchen@liverpool.ac.uk.
  • Clowes R; Department of Chemistry and Materials Innovation Factory , University of Liverpool , 51 Oxford Street , Liverpool L7 3NY , UK . Email: ssprick@liverpool.ac.uk ; Email: aicooper@liverpool.ac.uk ; Email: lchen@liverpool.ac.uk.
  • Bilton M; Department of Chemistry and Materials Innovation Factory , University of Liverpool , 51 Oxford Street , Liverpool L7 3NY , UK . Email: ssprick@liverpool.ac.uk ; Email: aicooper@liverpool.ac.uk ; Email: lchen@liverpool.ac.uk.
  • Chen L; Imaging Centre at Liverpool , University of Liverpool , Liverpool L69 3GL , UK.
  • Sprick RS; Department of Chemistry and Materials Innovation Factory , University of Liverpool , 51 Oxford Street , Liverpool L7 3NY , UK . Email: ssprick@liverpool.ac.uk ; Email: aicooper@liverpool.ac.uk ; Email: lchen@liverpool.ac.uk.
  • Cooper AI; Leverhulme Research Centre for Functional Materials Design , Materials Innovation Factory and Department of Chemistry , University of Liverpool , Oxford Street , Liverpool L7 3NY , UK.
Chem Sci ; 11(2): 543-550, 2020 Jan 14.
Article en En | MEDLINE | ID: mdl-32206271
ABSTRACT
Photocatalytic conversion of CO2 into fuels is an important challenge for clean energy research and has attracted considerable interest. Here we show that tethering molecular catalysts-a rhenium complex, [Re(bpy)(CO)3Cl]-together in the form of a crystalline covalent organic framework (COF) affords a heterogeneous photocatalyst with a strong visible light absorption, a high CO2 binding affinity, and ultimately an improved catalytic performance over its homogeneous Re counterpart. The COF incorporates bipyridine sites, allowing for ligation of the Re complex, into a fully π-conjugated backbone that is chemically robust and promotes light-harvesting. A maximum rate of 1040 µmol g-1 h-1 for CO production with 81% selectivity was measured. CO production rates were further increased up to 1400 µmol g-1 h-1, with an improved selectivity of 86%, when a photosensitizer was added. Addition of platinum resulted in production of syngas, hence, the co-formation of H2 and CO, the chemical composition of which could be adjusted by varying the ratio of COF to platinum. An amorphous analog of the COF showed significantly lower CO production rates, suggesting that crystallinity of the COF is beneficial to its photocatalytic performance in CO2 reduction.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2020 Tipo del documento: Article