Your browser doesn't support javascript.
loading
Real-time measurement of cellular bioenergetics in fully differentiated human nasal epithelial cells grown at air-liquid-interface.
Mavin, Emily; Verdon, Bernard; Carrie, Sean; Saint-Criq, Vinciane; Powell, Jason; Kuttruff, Christian A; Ward, Chris; Garnett, James P; Miwa, Satomi.
Afiliación
  • Mavin E; Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom.
  • Verdon B; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom.
  • Carrie S; Institute of Health and Society, Newcastle University, Newcastle Upon Tyne, United Kingdom.
  • Saint-Criq V; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom.
  • Powell J; Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom.
  • Kuttruff CA; Medicinal Chemistry, Boehringer Ingelheim Pharma, Biberach an der Riss, Germany.
  • Ward C; Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom.
  • Garnett JP; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom.
  • Miwa S; Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1158-L1164, 2020 06 01.
Article en En | MEDLINE | ID: mdl-32267720
ABSTRACT
Shifts in cellular metabolic phenotypes have the potential to cause disease-driving processes in respiratory disease. The respiratory epithelium is particularly susceptible to metabolic shifts in disease, but our understanding of these processes is limited by the incompatibility of the technology required to measure metabolism in real-time with the cell culture platforms used to generate differentiated respiratory epithelial cell types. Thus, to date, our understanding of respiratory epithelial metabolism has been restricted to that of basal epithelial cells in submerged culture, or via indirect end point metabolomics readouts in lung tissue. Here we present a novel methodology using the widely available Seahorse Analyzer platform to monitor real-time changes in the cellular metabolism of fully differentiated primary human airway epithelial cells grown at air-liquid interface (ALI). We show increased glycolytic, but not mitochondrial, ATP production rates in response to physiologically relevant increases in glucose availability. We also show that pharmacological inhibition of lactate dehydrogenase is able to reduce glucose-induced shifts toward aerobic glycolysis. This method is timely given the recent advances in our understanding of new respiratory epithelial subtypes that can only be observed in vitro through culture at ALI and will open new avenues to measure real-time metabolic changes in healthy and diseased respiratory epithelium, and in turn the potential for the development of novel therapeutics targeting metabolic-driven disease phenotypes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Sistemas de Computación / Diferenciación Celular / Nariz / Aire / Metabolismo Energético / Células Epiteliales Límite: Humans Idioma: En Revista: Am J Physiol Lung Cell Mol Physiol Asunto de la revista: BIOLOGIA MOLECULAR / FISIOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Sistemas de Computación / Diferenciación Celular / Nariz / Aire / Metabolismo Energético / Células Epiteliales Límite: Humans Idioma: En Revista: Am J Physiol Lung Cell Mol Physiol Asunto de la revista: BIOLOGIA MOLECULAR / FISIOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Reino Unido