Your browser doesn't support javascript.
loading
Coarse Alignment of Topic and Sentiment: A Unified Model for Cross-Lingual Sentiment Classification.
IEEE Trans Neural Netw Learn Syst ; 32(2): 736-747, 2021 02.
Article en En | MEDLINE | ID: mdl-32287008
Cross-lingual sentiment classification (CLSC) aims to leverage rich-labeled resources in the source language to improve prediction models of a resource-scarce domain in the target language. Existing feature representation learning-based approaches try to minimize the difference of latent features between different domains by exact alignment, which is achieved by either one-to-one topic alignment or matrix projection. Exact alignment, however, restricts the representation flexibility and further degrades the model performances on CLSC tasks if the distribution difference between two language domains is large. On the other hand, most previous studies proposed document-level models or ignored sentiment polarities of topics that might lead to insufficient learning of latent features. To solve the abovementioned problems, we propose a coarse alignment mechanism to enhance the model's representation by a group-to-group topic alignment into an aspect-level fine-grained model. First, we propose an unsupervised aspect, opinion, and sentiment unification model (AOS), which trimodels aspects, opinions, and sentiments of reviews from different domains and helps capture more accurate latent feature representation by a coarse alignment mechanism. To further boost AOS, we propose ps-AOS, a partial supervised AOS model, in which labeled source language data help minimize the difference of feature representations between two language domains with the help of logistics regression. Finally, an expectation-maximization framework with Gibbs sampling is then proposed to optimize our model. Extensive experiments on various multilingual product review data sets show that ps-AOS significantly outperforms various kinds of state-of-the-art baselines.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: IEEE Trans Neural Netw Learn Syst Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: IEEE Trans Neural Netw Learn Syst Año: 2021 Tipo del documento: Article