Your browser doesn't support javascript.
loading
Disease characterization using a partial correlation-based sample-specific network.
Huang, Yanhong; Chang, Xiao; Zhang, Yu; Chen, Luonan; Liu, Xiaoping.
Afiliación
  • Huang Y; Institute of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu 233030, China, and School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, China.
  • Chang X; Institute of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu 233030, China.
  • Zhang Y; School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, China.
  • Chen L; Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China, Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China, Sh
  • Liu X; School of Mathematics and Statistics, Shandong University at Weihai, Weihai 264209, China.
Brief Bioinform ; 22(3)2021 05 20.
Article en En | MEDLINE | ID: mdl-32422654
A single-sample network (SSN) is a biological molecular network constructed from single-sample data given a reference dataset and can provide insights into the mechanisms of individual diseases and aid in the development of personalized medicine. In this study, we proposed a computational method, a partial correlation-based single-sample network (P-SSN), which not only infers a network from each single-sample data given a reference dataset but also retains the direct interactions by excluding indirect interactions (https://github.com/hyhRise/P-SSN). By applying P-SSN to analyze tumor data from the Cancer Genome Atlas and single cell data, we validated the effectiveness of P-SSN in predicting driver mutation genes (DMGs), producing network distance, identifying subtypes and further classifying single cells. In particular, P-SSN is highly effective in predicting DMGs based on single-sample data. P-SSN is also efficient for subtyping complex diseases and for clustering single cells by introducing network distance between any two samples.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Biología Computacional Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Biología Computacional Límite: Humans Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: China