Your browser doesn't support javascript.
loading
Polymer-Based Bioorthogonal Nanocatalysts for the Treatment of Bacterial Biofilms.
Huang, Rui; Li, Cheng-Hsuan; Cao-Milán, Roberto; He, Luke D; Makabenta, Jessa Marie; Zhang, Xianzhi; Yu, Erlei; Rotello, Vincent M.
Afiliación
  • Huang R; Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States.
  • Li CH; Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States.
  • Cao-Milán R; Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States.
  • He LD; Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States.
  • Makabenta JM; Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States.
  • Zhang X; Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States.
  • Yu E; Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States.
  • Rotello VM; Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China.
J Am Chem Soc ; 142(24): 10723-10729, 2020 06 17.
Article en En | MEDLINE | ID: mdl-32464057
ABSTRACT
Bioorthogonal catalysis offers a unique strategy to modulate biological processes through the in situ generation of therapeutic agents. However, the direct application of bioorthogonal transition metal catalysts (TMCs) in complex media poses numerous challenges due to issues of limited biocompatibility, poor water solubility, and catalyst deactivation in biological environments. We report here the creation of catalytic "polyzymes", comprised of self-assembled polymer nanoparticles engineered to encapsulate lipophilic TMCs. The incorporation of catalysts into these nanoparticle scaffolds creates water-soluble constructs that provide a protective environment for the catalyst. The potential therapeutic utility of these nanozymes was demonstrated through antimicrobial studies in which a cationic nanozyme was able to penetrate into biofilms and eradicate embedded bacteria through the bioorthogonal activation of a pro-antibiotic.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polímeros / Biopelículas / Elementos de Transición / Escherichia coli / Nanopartículas del Metal / Antibacterianos Idioma: En Revista: J Am Chem Soc Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Polímeros / Biopelículas / Elementos de Transición / Escherichia coli / Nanopartículas del Metal / Antibacterianos Idioma: En Revista: J Am Chem Soc Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos