Your browser doesn't support javascript.
loading
Photoprogrammable Mesogenic Soft Helical Architectures: A Promising Avenue toward Future Chiro-Optics.
Zheng, Zhi-Gang; Lu, Yan-Qing; Li, Quan.
Afiliación
  • Zheng ZG; Department of Physics, East China University of Science and Technology, Shanghai, 200237, China.
  • Lu YQ; National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China.
  • Li Q; Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA.
Adv Mater ; 32(41): e1905318, 2020 Oct.
Article en En | MEDLINE | ID: mdl-32483915
ABSTRACT
Mesogenic soft materials, having single or multiple mesogen moieties per molecule, commonly exhibit typical self-organization characteristics, which promotes the formation of elegant helical superstructures or supramolecular assemblies in chiral environments. Such helical superstructures play key roles in the propagation of circularly polarized light and display optical properties with prominent handedness, that is, chiro-optical properties. The leveraging of light to program the chiro-optical properties of such mesogenic helical soft materials by homogeneously dispersing photosensitive chiral material into an achiral soft system or covalently connecting photochromic moieties to the molecules has attracted considerable attention in terms of materials, properties, and potential applications and has been a thriving topic in both fundamental science and application engineering. State-of-the-art technologies are described in terms of the material design, synthesis, properties, and modulation of photoprogrammable chiro-optical mesogenic soft helical architectures. Additionally, the scientific issues and technical problems that hinder further development of these materials for use in various fields are outlined and discussed. Such photoprogrammable mesogenic soft helical materials are competitive candidates for use in stimulus-controllable chiro-optical devices with high optical efficiency, stable optical properties, and easy miniaturization, facilitating the future integration and systemization of chiro-optical chips in photonics, photochemistry, biomedical engineering, chemical engineering, and beyond.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2020 Tipo del documento: Article País de afiliación: China