Your browser doesn't support javascript.
loading
ASCL1 regulates neurodevelopmental transcription factors and cell cycle genes in brain tumors of glioma mouse models.
Vue, Tou Yia; Kollipara, Rahul K; Borromeo, Mark D; Smith, Tyler; Mashimo, Tomoyuki; Burns, Dennis K; Bachoo, Robert M; Johnson, Jane E.
Afiliación
  • Vue TY; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Kollipara RK; McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Borromeo MD; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Smith T; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Mashimo T; Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Burns DK; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Bachoo RM; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
  • Johnson JE; Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
Glia ; 68(12): 2613-2630, 2020 12.
Article en En | MEDLINE | ID: mdl-32573857
ABSTRACT
Glioblastomas (GBMs) are incurable brain tumors with a high degree of cellular heterogeneity and genetic mutations. Transcription factors that normally regulate neural progenitors and glial development are aberrantly coexpressed in GBM, conferring cancer stem-like properties to drive tumor progression and therapeutic resistance. However, the functional role of individual transcription factors in GBMs in vivo remains elusive. Here, we demonstrate that the basic-helix-loop-helix transcription factor ASCL1 regulates transcriptional targets that are central to GBM development, including neural stem cell and glial transcription factors, oncogenic signaling molecules, chromatin modifying genes, and cell cycle and mitotic genes. We also show that the loss of ASCL1 significantly reduces the proliferation of GBMs induced in the brain of a genetically relevant glioma mouse model, resulting in extended survival times. RNA-seq analysis of mouse GBM tumors reveal that the loss of ASCL1 is associated with downregulation of cell cycle genes, illustrating an important role for ASCL1 in controlling the proliferation of GBM.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Glioblastoma Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Glia Asunto de la revista: NEUROLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Neoplasias Encefálicas / Glioblastoma Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Glia Asunto de la revista: NEUROLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos