Extension and Limits of Cryoscopy for Nanoconfined Solutions.
J Phys Chem Lett
; 11(14): 5763-5769, 2020 Jul 16.
Article
en En
| MEDLINE
| ID: mdl-32590897
This work investigates the phase behavior of aqueous solutions of glycerol confined in MCM-41 and SBA-15 nanoporous matrixes by calorimetry. Limitations due to overfilling and eutectic freezing are prevented by the absence of an external liquid reservoir and by the glass-forming property of glycerol. Consequently, the stability of nanoconfined ice in equilibrium with aqueous solutions is studied over a wide range of compositions. In confinement, a large temperature depression of the liquidus line is observed. A thermodynamic model accounting simultaneously for the cryoscopic and the Gibbs-Thomson effects gives a consistent view of the phase diagram for large pores (Rp = 4.15 nm). For smaller pores (Rp = 1.8 nm), it reveals that the water activity strongly deviates from the bulk solution with the same composition, indicating the possible role of concentration heterogeneities in determining the onset of ice freezing in strongly nanoconfined solutions.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
J Phys Chem Lett
Año:
2020
Tipo del documento:
Article
País de afiliación:
Francia