Your browser doesn't support javascript.
loading
3-Nitrooxypropanol decreases methane emissions and increases hydrogen emissions of early lactation dairy cows, with associated changes in nutrient digestibility and energy metabolism.
van Gastelen, Sanne; Dijkstra, Jan; Binnendijk, Gisabeth; Duval, Stéphane M; Heck, Jeroen M L; Kindermann, Maik; Zandstra, Tamme; Bannink, André.
Afiliación
  • van Gastelen S; Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands. Electronic address: sanne.vangastelen@wur.nl.
  • Dijkstra J; Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands.
  • Binnendijk G; Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands.
  • Duval SM; DSM Nutritional Products, Animal Nutrition and Health, PO Box 2676, 4002 Basel, Switzerland.
  • Heck JML; Friesland Campina, PO Box 1551, 3800 BN, Amersfoort, the Netherlands.
  • Kindermann M; DSM Nutritional Products, Animal Nutrition and Health, PO Box 2676, 4002 Basel, Switzerland.
  • Zandstra T; Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands.
  • Bannink A; Wageningen Livestock Research, Wageningen University & Research, PO Box 338, 6700 AH, Wageningen, the Netherlands.
J Dairy Sci ; 103(9): 8074-8093, 2020 Sep.
Article en En | MEDLINE | ID: mdl-32600756
ABSTRACT
The aim of this study was to determine the methane (CH4) mitigation potential of 3-nitrooxypropanol and the persistency of its effect when fed to dairy cows in early lactation. Sixteen Holstein-Friesian cows (all multiparous; 11 cows in their second parity and 5 cows in their third parity) were blocked in pairs, based on actual calving date, parity, and previous lactation milk yield, and randomly allocated to 1 of 2 dietary treatments a diet including 51 mg of 3-nitrooxypropanol/kg of dry matter (3-NOP) and a diet including a placebo at the same concentration (CON). Cows were fed a 35% grass silage, 25% corn silage, and 40% concentrate (on dry matter basis) diet from 3 d after calving up to 115 d in milk (DIM). Every 4 weeks, the cows were housed in climate respiration chambers for 5 d to measure lactation performance, feed and nutrient intake, apparent total-tract digestibility of nutrients, energy and N metabolism, and gaseous exchange (4 chamber visits per cow in total, representing 27, 55, 83, and 111 DIM). Feeding 3-NOP did not affect dry matter intake (DMI), milk yield, milk component yield, or feed efficiency. These variables were affected by stage of lactation, following the expected pattern of advanced lactation. Feeding 3-NOP did not affect CH4 production (g/d) at 27 and 83 DIM, but decreased CH4 production at 55 and 111 DIM by an average of 18.5%. This response in CH4 production is most likely due to the differences observed in feed intake across the different stages of lactation because CH4 yield (g/kg of DMI) was lower (on average 16%) at each stage of lactation upon feeding 3-NOP. On average, feeding 3-NOP increased H2 production and intensity 12-fold; with the control diet, H2 yield did not differ between the different stages of lactation, whereas with the 3-NOP treatment H2 yield decreased from 0.429 g/kg of DMI at 27 DIM to 0.387 g/kg of DMI at 111 DIM. The apparent total-tract digestibility of dry matter, organic matter, neutral detergent fiber, and gross energy was greater for the 3-NOP treatment. In comparison to the control treatment, 3-NOP did not affect energy and N balance, except for a greater metabolizable energy intake to gross energy intake ratio (65.4 and 63.7%, respectively) and a greater body weight gain (average 0.90 and 0.01% body weight change, respectively). In conclusion, feeding 3-NOP is an effective strategy to decrease CH4 emissions (while increasing H2 emission) in early lactation Holstein-Friesian cows with positive effects on apparent total-tract digestibility of nutrients.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Propanoles / Digestión / Metabolismo Energético / Hidrógeno / Metano Tipo de estudio: Risk_factors_studies Límite: Animals / Pregnancy Idioma: En Revista: J Dairy Sci Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Propanoles / Digestión / Metabolismo Energético / Hidrógeno / Metano Tipo de estudio: Risk_factors_studies Límite: Animals / Pregnancy Idioma: En Revista: J Dairy Sci Año: 2020 Tipo del documento: Article