Your browser doesn't support javascript.
loading
Investigating cardiac stimulation limits of MRI gradient coils using electromagnetic and electrophysiological simulations in human and canine body models.
Klein, Valerie; Davids, Mathias; Schad, Lothar R; Wald, Lawrence L; Guérin, Bastien.
Afiliación
  • Klein V; Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
  • Davids M; A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
  • Schad LR; Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
  • Wald LL; A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
  • Guérin B; Harvard Medical School, Boston, Massachusetts, USA.
Magn Reson Med ; 85(2): 1047-1061, 2021 02.
Article en En | MEDLINE | ID: mdl-32812280
ABSTRACT

PURPOSE:

Cardiac stimulation (CS) limits to gradient coil switching speed are difficult to measure in humans; instead, current regulatory guidelines (IEC 60601-2-33) are based on animal experiments and electric field-to-dB/dt conversion factors computed for a simple, homogeneous body model. We propose improvement to this methodology by using more detailed CS modeling based on realistic body models and electrophysiological models of excitable cardiac fibers.

METHODS:

We compute electric fields induced by a solenoid, coplanar loops, and a commercial gradient coil in two human body models and a canine model. The canine simulations mimic previously published experiments. We generate realistic fiber topologies for the cardiac Purkinje and ventricular muscle fiber networks using rule-based algorithms, and evaluate CS thresholds using validated electrodynamic models of these fibers.

RESULTS:

We were able to reproduce the average measured canine CS thresholds within 5%. In all simulations, the Purkinje fibers were stimulated before the ventricular fibers, and therefore set the effective CS threshold. For the investigated gradient coil, simulated CS thresholds for the x-, y-, and z-axis were at least one order of magnitude greater than the International Electrotechnical Commission limit.

CONCLUSION:

We demonstrate an approach to simulate gradient-induced CS using a combination of electromagnetic and electrophysiological modeling. Pending additional validation, these simulations could guide the assessment of CS limits to MRI gradient coil switching speed. Such an approach may lead to less conservative, but still safe, operation limits, enabling the use of the maximum gradient amplitude versus slew rate parameter space of recent, powerful gradient systems.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Fenómenos Electromagnéticos Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Imagen por Resonancia Magnética / Fenómenos Electromagnéticos Tipo de estudio: Prognostic_studies Límite: Animals / Humans Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article País de afiliación: Alemania