Your browser doesn't support javascript.
loading
Glis1 facilitates induction of pluripotency via an epigenome-metabolome-epigenome signalling cascade.
Li, Linpeng; Chen, Keshi; Wang, Tianyu; Wu, Yi; Xing, Guangsuo; Chen, Mengqi; Hao, Zhihong; Zhang, Cheng; Zhang, Jinye; Ma, Bochao; Liu, Zihuang; Yuan, Hao; Liu, Zijian; Long, Qi; Zhou, Yanshuang; Qi, Juntao; Zhao, Danyun; Gao, Mi; Pei, Duanqing; Nie, Jinfu; Ye, Dan; Pan, Guangjin; Liu, Xingguo.
Afiliación
  • Li L; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangz
  • Chen K; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China.
  • Wang T; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangz
  • Wu Y; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China.
  • Xing G; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangz
  • Chen M; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China.
  • Hao Z; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangz
  • Zhang C; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China.
  • Zhang J; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangz
  • Ma B; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China.
  • Liu Z; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangz
  • Yuan H; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China.
  • Liu Z; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangz
  • Long Q; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China.
  • Zhou Y; Fudan University, Shanghai, China.
  • Qi J; Fudan University, Shanghai, China.
  • Zhao D; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangz
  • Gao M; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China.
  • Pei D; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangz
  • Nie J; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China.
  • Ye D; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangz
  • Pan G; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Guangzhou, China.
  • Liu X; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Hefei Institute of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangz
Nat Metab ; 2(9): 882-892, 2020 09.
Article en En | MEDLINE | ID: mdl-32839595
ABSTRACT
Somatic cell reprogramming provides insight into basic principles of cell fate determination, which remain poorly understood. Here we show that the transcription factor Glis1 induces multi-level epigenetic and metabolic remodelling in stem cells that facilitates the induction of pluripotency. We find that Glis1 enables reprogramming of senescent cells into pluripotent cells and improves genome stability. During early phases of reprogramming, Glis1 directly binds to and opens chromatin at glycolytic genes, whereas it closes chromatin at somatic genes to upregulate glycolysis. Subsequently, higher glycolytic flux enhances cellular acetyl-CoA and lactate levels, thereby enhancing acetylation (H3K27Ac) and lactylation (H3K18la) at so-called 'second-wave' and pluripotency gene loci, opening them up to facilitate cellular reprogramming. Our work highlights Glis1 as a powerful reprogramming factor, and reveals an epigenome-metabolome-epigenome signalling cascade that involves the glycolysis-driven coordination of histone acetylation and lactylation in the context of cell fate determination.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Factores de Transcripción / Transducción de Señal / Proteínas de Unión al ADN / Metaboloma / Células Madre Pluripotentes Inducidas / Epigenoma Límite: Animals Idioma: En Revista: Nat Metab Año: 2020 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Factores de Transcripción / Transducción de Señal / Proteínas de Unión al ADN / Metaboloma / Células Madre Pluripotentes Inducidas / Epigenoma Límite: Animals Idioma: En Revista: Nat Metab Año: 2020 Tipo del documento: Article