Your browser doesn't support javascript.
loading
Effects of MP2RAGE B1+ sensitivity on inter-site T1 reproducibility and hippocampal morphometry at 7T.
Haast, Roy A M; Lau, Jonathan C; Ivanov, Dimo; Menon, Ravi S; Uludag, Kâmil; Khan, Ali R.
Afiliación
  • Haast RAM; Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada. Electronic address: rhaast@uwo.ca.
  • Lau JC; Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Department of Clinical Neurological Sciences, Division of Neurosurgery, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada.
  • Ivanov D; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, Netherlands.
  • Menon RS; Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Brain and Mind Institute, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Department of Medical Biophysics, Schulich School of Medicine
  • Uludag K; IBS Center for Neuroscience Imaging Research, Sungkyunkwan University, Seobu-ro, 2066, Jangan-gu, Suwon, South Korea; Department of Biomedical Engineering, N Center, Sungkyunkwan University, Seobu-ro, 2066, Jangan-gu, Suwon, South Korea; Techna Institute and Koerner Scientist in MR Imaging, Universi
  • Khan AR; Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Brain and Mind Institute, Western University, 1151 Richmond St. N., London, ON N6A 5B7, Canada; Department of Medical Biophysics, Schulich School of Medicine
Neuroimage ; 224: 117373, 2021 01 01.
Article en En | MEDLINE | ID: mdl-32949709
Most neuroanatomical studies are based on T1-weighted MR images, whose intensity profiles are not solely determined by the tissue's longitudinal relaxation times (T1), but also affected by varying non-T1 contributions, hampering data reproducibility. In contrast, quantitative imaging using the MP2RAGE sequence, for example, allows direct characterization of the brain based on the tissue property of interest. Combined with 7 Tesla (7T) MRI, this offers unique opportunities to obtain robust high-resolution brain data characterized by a high reproducibility, sensitivity and specificity. However, specific MP2RAGE parameter choices - e.g., to emphasize intracortical myelin-dependent contrast variations - can substantially impact image quality and cortical analyses through remnants of B1+-related intensity variations, as illustrated in our previous work. To follow up on this: we (1) validate this protocol effect using a dataset acquired with a particularly B1+ insensitive set of MP2RAGE parameters combined with parallel transmission excitation; and (2) extend our analyses to evaluate the effects on hippocampal morphometry. The latter remained unexplored initially, but can provide important insights related to generalizability and reproducibility of neurodegenerative research using 7T MRI. We confirm that B1+ inhomogeneities have a considerably variable effect on cortical T1 estimates, as well as on hippocampal morphometry depending on the MP2RAGE setup. While T1 differed substantially across datasets initially, we show the inter-site T1 comparability improves after correcting for the spatially varying B1+ field using a separately acquired Sa2RAGE B1+ map. Finally, removal of B1+ residuals affects hippocampal volumetry and boundary definitions, particularly near structures characterized by strong intensity changes (e.g. cerebral spinal fluid). Taken together, we show that the choice of MP2RAGE parameters can impact T1 comparability across sites and present evidence that hippocampal segmentation results are modulated by B1+ inhomogeneities. This calls for careful (1) consideration of sequence parameters when setting acquisition protocols, as well as (2) acquisition of a B1+ map to correct MP2RAGE data for potential B1+ variations to allow comparison across datasets.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Encéfalo / Imagen por Resonancia Magnética / Hipocampo Tipo de estudio: Diagnostic_studies Límite: Adult / Humans / Male Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Encéfalo / Imagen por Resonancia Magnética / Hipocampo Tipo de estudio: Diagnostic_studies Límite: Adult / Humans / Male Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article