Your browser doesn't support javascript.
loading
Rational design of balanced dual-targeting antibiotics with limited resistance.
Nyerges, Akos; Tomasic, Tihomir; Durcik, Martina; Revesz, Tamas; Szili, Petra; Draskovits, Gabor; Bogar, Ferenc; Skok, Ziga; Zidar, Nace; Ilas, Janez; Zega, Anamarija; Kikelj, Danijel; Daruka, Lejla; Kintses, Balint; Vasarhelyi, Balint; Foldesi, Imre; Kata, Diána; Welin, Martin; Kimbung, Raymond; Focht, Dorota; Masic, Lucija Peterlin; Pal, Csaba.
Afiliación
  • Nyerges A; Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary.
  • Tomasic T; University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
  • Durcik M; University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
  • Revesz T; Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary.
  • Szili P; Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary.
  • Draskovits G; Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary.
  • Bogar F; Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary.
  • Skok Z; Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary.
  • Zidar N; MTA-SZTE Biomimetic Systems Research Group, Department of Medical Chemistry, University of Szeged, Hungary.
  • Ilas J; University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
  • Zega A; University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
  • Kikelj D; University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
  • Daruka L; University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
  • Kintses B; University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia.
  • Vasarhelyi B; Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary.
  • Foldesi I; Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
  • Kata D; Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary.
  • Welin M; HCEMM-BRC Translational Microbiology Lab, Szeged, Hungary.
  • Kimbung R; Synthetic and Systems Biology Unit, Biological Research Center, Szeged, Hungary.
  • Focht D; Department of Laboratory Medicine, University of Szeged, Szeged, Hungary.
  • Masic LP; Department of Laboratory Medicine, University of Szeged, Szeged, Hungary.
  • Pal C; SARomics Biostructures, Medicon Village, Lund, Sweden.
PLoS Biol ; 18(10): e3000819, 2020 10.
Article en En | MEDLINE | ID: mdl-33017402
ABSTRACT
Antibiotics that inhibit multiple bacterial targets offer a promising therapeutic strategy against resistance evolution, but developing such antibiotics is challenging. Here we demonstrate that a rational design of balanced multitargeting antibiotics is feasible by using a medicinal chemistry workflow. The resultant lead compounds, ULD1 and ULD2, belonging to a novel chemical class, almost equipotently inhibit bacterial DNA gyrase and topoisomerase IV complexes and interact with multiple evolutionary conserved amino acids in the ATP-binding pockets of their target proteins. ULD1 and ULD2 are excellently potent against a broad range of gram-positive bacteria. Notably, the efficacy of these compounds was tested against a broad panel of multidrug-resistant Staphylococcus aureus clinical strains. Antibiotics with clinical relevance against staphylococcal infections fail to inhibit a significant fraction of these isolates, whereas both ULD1 and ULD2 inhibit all of them (minimum inhibitory concentration [MIC] ≤1 µg/mL). Resistance mutations against these compounds are rare, have limited impact on compound susceptibility, and substantially reduce bacterial growth. Based on their efficacy and lack of toxicity demonstrated in murine infection models, these compounds could translate into new therapies against multidrug-resistant bacterial infections.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Diseño de Fármacos / Farmacorresistencia Bacteriana Múltiple / Antibacterianos Límite: Animals / Humans Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Hungria

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Diseño de Fármacos / Farmacorresistencia Bacteriana Múltiple / Antibacterianos Límite: Animals / Humans Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2020 Tipo del documento: Article País de afiliación: Hungria