Your browser doesn't support javascript.
loading
Self-regulated hirudin delivery for anticoagulant therapy.
Xu, Xiao; Huang, Xuechao; Zhang, Ying; Shen, Shiyang; Feng, Zhizi; Dong, He; Zhang, Can; Mo, Ran.
Afiliación
  • Xu X; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China.
  • Huang X; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China.
  • Zhang Y; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China.
  • Shen S; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China.
  • Feng Z; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China.
  • Dong H; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China.
  • Zhang C; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China.
  • Mo R; State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, China. rmo@cpu.edu.cn.
Sci Adv ; 6(41)2020 10.
Article en En | MEDLINE | ID: mdl-33036973
ABSTRACT
Pathological coagulation, a disorder of blood clotting regulation, induces a number of cardiovascular diseases. A safe and efficient system for the delivery of anticoagulants to mimic the physiological negative feedback mechanism by responding to the coagulation signal changes holds the promise and potential for anticoagulant therapy. Here, we exploit a "closed-loop" controlled release strategy for the delivery of recombinant hirudin, an anticoagulant agent that uses a self-regulated nanoscale polymeric gel. The cross-linked nanogel network increases the stability and bioavailability of hirudin and reduces its clearance in vivo. Equipped with the clot-targeted ligand, the engineered nanogels promote the accumulation of hirudin in the fibrous clots and adaptively release the encapsulated hirudin upon the thrombin variation during the pathological proceeding of thrombus for potentiating anticoagulant activity and alleviating adverse effects. We show that this formulation efficiently prevents and inhibits the clot formation on the mouse models of pulmonary embolism and thrombosis.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Trombosis / Hirudinas Límite: Animals Idioma: En Revista: Sci Adv Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Trombosis / Hirudinas Límite: Animals Idioma: En Revista: Sci Adv Año: 2020 Tipo del documento: Article País de afiliación: China