Your browser doesn't support javascript.
loading
Fibroblast growth factor 2-induced human amniotic mesenchymal stem cells combined with autologous platelet rich plasma augmented tendon-to-bone healing.
Zhang, Jun; Liu, Ziming; Tang, Jingfeng; Li, Yuwan; You, Qi; Yang, Jibin; Jin, Ying; Zou, Gang; Ge, Zhen; Zhu, Xizhong; Yang, Qifan; Liu, Yi.
Afiliación
  • Zhang J; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China.
  • Liu Z; Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, China.
  • Tang J; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China.
  • Li Y; Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing.
  • You Q; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China.
  • Yang J; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China.
  • Jin Y; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China.
  • Zou G; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China.
  • Ge Z; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China.
  • Zhu X; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China.
  • Yang Q; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China.
  • Liu Y; Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, China.
J Orthop Translat ; 24: 155-165, 2020 Sep.
Article en En | MEDLINE | ID: mdl-33101966
OBJECTIVE: The purpose of this study was to explore the effect of fibroblast growth factor 2 (FGF-2) on collagenous fibre formation and the osteogenic differentiation of human amniotic mesenchymal stem cells (hAMSCs) in vitro, as well as the effect of FGF-2-induced hAMSCs combined with autologous platelet-rich plasma (PRP) on tendon-to-bone healing in vivo. METHODS: In vitro, hAMSCs were induced by various concentrations of FGF-2 (0, 10, 20, and 40 â€‹ng/ml) for 14 days, and the outcomes of ligamentous differentiation and osteogenic differentiation were detected by quantitative real-time reverse transcription PCR, Western blot, immunofluorescence, and picrosirius red staining. In addition, a lentivirus carrying the FGF-2 gene was used to transfect hAMSCs, and transfection efficiency was detected by quantitative real time reverse transcription PCR (qRT-PCR) and Western blot. In vivo, the effect of hAMSCs transfected with the FGF-2 gene combined with autologous PRP on tendon-to-bone healing was detected via histological examination, as well as biomechanical analysis and radiographic analysis. RESULTS: In vitro, different concentrations of FGF-2 (10, 20, and 40 â€‹ng/ml) all promoted the ligamentous differentiation and osteogenic differentiation of hAMSCs, and the low concentration of FGF-2 (10 â€‹ng/ml) had a good effect on differentiation. In addition, the lentivirus carrying the FGF-2 gene was successfully transfected into hAMSCs with an optimal multiplicity of infection (MOI) (50), and autologous PRP was prepared successfully. In vivo, the hAMSCs transfected with the FGF-2 gene combined with autologous PRP had a better effect on tendon-to-bone healing than the other groups (p â€‹< â€‹0.05), as evidenced by histological examination, biomechanical analysis, and radiographic analysis. CONCLUSION: hAMSCs transfected with the FGF-2 gene combined with autologous PRP could augment tendon-to-bone healing in a rabbit extra-articular model. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: hAMSCs transfected with the FGF-2 gene combined with autologous PRP may be a good clinical treatment for tendon-to-bone healing, especially for acute sports-related tendon-ligament injuries.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Orthop Translat Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: J Orthop Translat Año: 2020 Tipo del documento: Article País de afiliación: China