Your browser doesn't support javascript.
loading
Predicting single-cell gene expression profiles of imaging flow cytometry data with machine learning.
Chlis, Nikolaos-Kosmas; Rausch, Lisa; Brocker, Thomas; Kranich, Jan; Theis, Fabian J.
Afiliación
  • Chlis NK; Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany.
  • Rausch L; Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg 82377, Germany.
  • Brocker T; Institute for Immunology, Medical Faculty, Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Germany.
  • Kranich J; Institute for Immunology, Medical Faculty, Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Germany.
  • Theis FJ; Institute for Immunology, Medical Faculty, Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Germany.
Nucleic Acids Res ; 48(20): 11335-11346, 2020 11 18.
Article en En | MEDLINE | ID: mdl-33119742
ABSTRACT
High-content imaging and single-cell genomics are two of the most prominent high-throughput technologies for studying cellular properties and functions at scale. Recent studies have demonstrated that information in large imaging datasets can be used to estimate gene mutations and to predict the cell-cycle state and the cellular decision making directly from cellular morphology. Thus, high-throughput imaging methodologies, such as imaging flow cytometry can potentially aim beyond simple sorting of cell-populations. We introduce IFC-seq, a machine learning methodology for predicting the expression profile of every cell in an imaging flow cytometry experiment. Since it is to-date unfeasible to observe single-cell gene expression and morphology in flow, we integrate uncoupled imaging data with an independent transcriptomics dataset by leveraging common surface markers. We demonstrate that IFC-seq successfully models gene expression of a moderate number of key gene-markers for two independent imaging flow cytometry datasets (i) human blood mononuclear cells and (ii) mouse myeloid progenitor cells. In the case of mouse myeloid progenitor cells IFC-seq can predict gene expression directly from brightfield images in a label-free manner, using a convolutional neural network. The proposed method promises to add gene expression information to existing and new imaging flow cytometry datasets, at no additional cost.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Perfilación de la Expresión Génica / Análisis de la Célula Individual / Citometría de Flujo / Aprendizaje Automático Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Female / Humans / Male Idioma: En Revista: Nucleic Acids Res Año: 2020 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Perfilación de la Expresión Génica / Análisis de la Célula Individual / Citometría de Flujo / Aprendizaje Automático Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Female / Humans / Male Idioma: En Revista: Nucleic Acids Res Año: 2020 Tipo del documento: Article País de afiliación: Alemania