The Evolution in Electrochemical Performance of Honeycomb-Like Ni(OH)2 Derived from MOF Template with Morphology as a High-Performance Electrode Material for Supercapacitors.
Materials (Basel)
; 13(21)2020 Oct 30.
Article
en En
| MEDLINE
| ID: mdl-33143103
Ni(OH)2 derived from an MOF template was synthesized as an electrode material for supercapacitors. The electrochemical performance of the electrode was adjusted by effectively regulating the morphology of Ni(OH)2. The evolution of electrochemical performance of the electrode with morphology of Ni(OH)2 was highlighted in detail, based on which honeycomb-like Ni(OH)2 was successfully synthesized, and endowed the electrode with outstanding electrochemical performance. For the three-electrode testing system, honeycomb-like Ni(OH)2 exhibited a very high specific capacitance (1865 F·g-1 at 1 A·g-1, 1550 F·g-1 at 5 mV·s-1). Moreover, it also presented an excellent rate capability and cycling stability, due to 59.46 % of the initial value (1 A·g-1) being retained at 10 A·g-1, and 172% of initial value (first circle at 50 mV·s-1) being retained after 20,000 cycles. With respect to the assembled hybrid supercapacitor, honeycomb-like Ni(OH)2 also displayed superior electrochemical performance, with a high energy density (83.9 Wh·kg-1 at a power density of 374.8 W·kg-1). The outstanding electrochemical performance of Ni(OH)2 should be attributed to its unique honeycomb-like structure, with a very high specific surface area, which greatly accelerates the transformation and diffusion of active ions.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
Materials (Basel)
Año:
2020
Tipo del documento:
Article
País de afiliación:
China