Your browser doesn't support javascript.
loading
Dynamic brain fluctuations outperform connectivity measures and mirror pathophysiological profiles across dementia subtypes: A multicenter study.
Moguilner, Sebastian; García, Adolfo M; Perl, Yonatan Sanz; Tagliazucchi, Enzo; Piguet, Olivier; Kumfor, Fiona; Reyes, Pablo; Matallana, Diana; Sedeño, Lucas; Ibáñez, Agustín.
Afiliación
  • Moguilner S; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US; & Trinity College Dublin, Dublin, Ireland; Fundación Escuela de Medicina Nuclear (FUESMEN) and Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.
  • García AM; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US; & Trinity College Dublin, Dublin, Ireland; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad de San Andrés, Buenos Aires, Argentina; Faculty of Ed
  • Perl YS; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad de San Andrés, Buenos Aires, Argentina; Department of Physics, University of Buenos Aires, Argentina.
  • Tagliazucchi E; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Department of Physics, University of Buenos Aires, Argentina.
  • Piguet O; School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney, Australia.
  • Kumfor F; School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney, Australia.
  • Reyes P; Medical School, Aging Institute, Psychiatry and Mental Health, Pontificia Universidad Javeriana; Mental Health Unit, Hospital Universitario Fundación Santa Fe, Bogotá, Colombia, Hospital Universitario San Ignacio. Bogotá, Colombia.
  • Matallana D; Medical School, Aging Institute, Psychiatry and Mental Health, Pontificia Universidad Javeriana; Mental Health Unit, Hospital Universitario Fundación Santa Fe, Bogotá, Colombia, Hospital Universitario San Ignacio. Bogotá, Colombia.
  • Sedeño L; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina. Electronic address: lucas.sedeno@gmail.com.
  • Ibáñez A; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US; & Trinity College Dublin, Dublin, Ireland; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Universidad de San Andrés, Buenos Aires, Argentina; Universidad A
Neuroimage ; 225: 117522, 2021 01 15.
Article en En | MEDLINE | ID: mdl-33144220
From molecular mechanisms to global brain networks, atypical fluctuations are the hallmark of neurodegeneration. Yet, traditional fMRI research on resting-state networks (RSNs) has favored static and average connectivity methods, which by overlooking the fluctuation dynamics triggered by neurodegeneration, have yielded inconsistent results. The present multicenter study introduces a data-driven machine learning pipeline based on dynamic connectivity fluctuation analysis (DCFA) on RS-fMRI data from 300 participants belonging to three groups: behavioral variant frontotemporal dementia (bvFTD) patients, Alzheimer's disease (AD) patients, and healthy controls. We considered non-linear oscillatory patterns across combined and individual resting-state networks (RSNs), namely: the salience network (SN), mostly affected in bvFTD; the default mode network (DMN), mostly affected in AD; the executive network (EN), partially compromised in both conditions; the motor network (MN); and the visual network (VN). These RSNs were entered as features for dementia classification using a recent robust machine learning approach (a Bayesian hyperparameter tuned Gradient Boosting Machines (GBM) algorithm), across four independent datasets with different MR scanners and recording parameters. The machine learning classification accuracy analysis revealed a systematic and unique tailored architecture of RSN disruption. The classification accuracy ranking showed that the most affected networks for bvFTD were the SN + EN network pair (mean accuracy = 86.43%, AUC = 0.91, sensitivity = 86.45%, specificity = 87.54%); for AD, the DMN + EN network pair (mean accuracy = 86.63%, AUC = 0.89, sensitivity = 88.37%, specificity = 84.62%); and for the bvFTD vs. AD classification, the DMN + SN network pair (mean accuracy = 82.67%, AUC = 0.86, sensitivity = 81.27%, specificity = 83.01%). Moreover, the DFCA classification systematically outperformed canonical connectivity approaches (including both static and linear dynamic connectivity). Our findings suggest that non-linear dynamical fluctuations surpass two traditional seed-based functional connectivity approaches and provide a pathophysiological characterization of global brain networks in neurodegenerative conditions (AD and bvFTD) across multicenter data.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Demencia Frontotemporal / Función Ejecutiva / Enfermedad de Alzheimer / Conectoma / Vías Nerviosas Tipo de estudio: Clinical_trials / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article País de afiliación: Argentina

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Encéfalo / Demencia Frontotemporal / Función Ejecutiva / Enfermedad de Alzheimer / Conectoma / Vías Nerviosas Tipo de estudio: Clinical_trials / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Neuroimage Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article País de afiliación: Argentina