New insights on the function of plant acyl carrier proteins from comparative and evolutionary analysis.
Genomics
; 113(1 Pt 2): 1155-1165, 2021 01.
Article
en En
| MEDLINE
| ID: mdl-33221517
Acyl carrier proteins (ACPs) play a central role in both plastidial and mitochondrial Type II fatty acid synthesis in plant cells. However, a large proportion of plant ACPs remain functionally uncharacterized, and their evolutionary history remains elusive. In present study, 97 putative ACPs were identified from ten angiosperm species examined. Based on phylogenetic analysis, ACP genes were grouped into plastidial (cpACP: ACP1/2/3/4/5) and mitochondrial (mtACP: mtACP1/mtACP2/mtACP3) ACPs. Protein sequence (motifs and length), tertiary structure, and gene structure (exon number, average intron length, and intron phase) were highly conserved in different ACP subclades. The differentiation of ACPs into distinct types occurred 85-98 and 45-57 million years ago. A limited proportion of ACP genes experience tandem or segmental duplication, corresponding to two rounds of whole genome duplication. Ka/Ks ratios revealed that duplicated ACP genes underwent a purifying selection. Regarding expression patterns, most ACPs were expressed constitutively and tissue-specifically. Notably, the average expression levels of ACP1, mtACP3, and mtACP1 were positively correlated with those of ACP3, ACP4, and mtACP2, respectively. Analysis of cis-elements showed that seven motifs (CACTFTPPCA1, DOFCOREZM, GT1CONSENSUS, CAATBOX1, ARR1AT, POLLEN1LELAT52, and GATABOX) related to tissue-specific, ABA, and light-mediated gene regulation were ubiquitous in all ACPs investigated, which shed new light on the regulation patterns of these central enzymatic partners of the FAS system. This study presents a thorough overview of angiosperm ACP gene families and provides informative clues for the functional characterization of plant ACPs in the future.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Proteínas de Plantas
/
Proteína Transportadora de Acilo
/
Evolución Molecular
/
Magnoliopsida
Tipo de estudio:
Prognostic_studies
Idioma:
En
Revista:
Genomics
Asunto de la revista:
GENETICA
Año:
2021
Tipo del documento:
Article