Your browser doesn't support javascript.
loading
Working Memory Decline in Alzheimer's Disease Is Detected by Complexity Analysis of Multimodal EEG-fNIRS.
Perpetuini, David; Chiarelli, Antonio Maria; Filippini, Chiara; Cardone, Daniela; Croce, Pierpaolo; Rotunno, Ludovica; Anzoletti, Nelson; Zito, Michele; Zappasodi, Filippo; Merla, Arcangelo.
Afiliación
  • Perpetuini D; Institute for Advanced Biomedical Technologies, Department of Neuroscience and Imaging, University G. D'Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy.
  • Chiarelli AM; Institute for Advanced Biomedical Technologies, Department of Neuroscience and Imaging, University G. D'Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy.
  • Filippini C; Institute for Advanced Biomedical Technologies, Department of Neuroscience and Imaging, University G. D'Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy.
  • Cardone D; Institute for Advanced Biomedical Technologies, Department of Neuroscience and Imaging, University G. D'Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy.
  • Croce P; Institute for Advanced Biomedical Technologies, Department of Neuroscience and Imaging, University G. D'Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy.
  • Rotunno L; Department of Medicine and Science of Ageing, University G. d'Annunzio, Via Dei Vestini 31, 66100 Chieti, Italy.
  • Anzoletti N; Department of Medicine and Science of Ageing, University G. d'Annunzio, Via Dei Vestini 31, 66100 Chieti, Italy.
  • Zito M; Department of Medicine and Science of Ageing, University G. d'Annunzio, Via Dei Vestini 31, 66100 Chieti, Italy.
  • Zappasodi F; Institute for Advanced Biomedical Technologies, Department of Neuroscience and Imaging, University G. D'Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy.
  • Merla A; Institute for Advanced Biomedical Technologies, Department of Neuroscience and Imaging, University G. D'Annunzio of Chieti-Pescara, Via Luigi Polacchi 13, 66100 Chieti, Italy.
Entropy (Basel) ; 22(12)2020 Dec 06.
Article en En | MEDLINE | ID: mdl-33279924
Alzheimer's disease (AD) is characterized by working memory (WM) failures that can be assessed at early stages through administering clinical tests. Ecological neuroimaging, such as Electroencephalography (EEG) and functional Near Infrared Spectroscopy (fNIRS), may be employed during these tests to support AD early diagnosis within clinical settings. Multimodal EEG-fNIRS could measure brain activity along with neurovascular coupling (NC) and detect their modifications associated with AD. Data analysis procedures based on signal complexity are suitable to estimate electrical and hemodynamic brain activity or their mutual information (NC) during non-structured experimental paradigms. In this study, sample entropy of whole-head EEG and frontal/prefrontal cortex fNIRS was evaluated to assess brain activity in early AD and healthy controls (HC) during WM tasks (i.e., Rey-Osterrieth complex figure and Raven's progressive matrices). Moreover, conditional entropy between EEG and fNIRS was evaluated as indicative of NC. The findings demonstrated the capability of complexity analysis of multimodal EEG-fNIRS to detect WM decline in AD. Furthermore, a multivariate data-driven analysis, performed on these entropy metrics and based on the General Linear Model, allowed classifying AD and HC with an AUC up to 0.88. EEG-fNIRS may represent a powerful tool for the clinical evaluation of WM decline in early AD.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies / Screening_studies Idioma: En Revista: Entropy (Basel) Año: 2020 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies / Screening_studies Idioma: En Revista: Entropy (Basel) Año: 2020 Tipo del documento: Article País de afiliación: Italia