Your browser doesn't support javascript.
loading
OpenSim Moco: Musculoskeletal optimal control.
Dembia, Christopher L; Bianco, Nicholas A; Falisse, Antoine; Hicks, Jennifer L; Delp, Scott L.
Afiliación
  • Dembia CL; Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America.
  • Bianco NA; Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America.
  • Falisse A; Department of Movement Sciences, KU Leuven, Leuven, Belgium.
  • Hicks JL; Department of Bioengineering, Stanford University, Stanford, California, United States of America.
  • Delp SL; Department of Bioengineering, Stanford University, Stanford, California, United States of America.
PLoS Comput Biol ; 16(12): e1008493, 2020 12.
Article en En | MEDLINE | ID: mdl-33370252
Musculoskeletal simulations are used in many different applications, ranging from the design of wearable robots that interact with humans to the analysis of patients with impaired movement. Here, we introduce OpenSim Moco, a software toolkit for optimizing the motion and control of musculoskeletal models built in the OpenSim modeling and simulation package. OpenSim Moco uses the direct collocation method, which is often faster and can handle more diverse problems than other methods for musculoskeletal simulation. Moco frees researchers from implementing direct collocation themselves-which typically requires extensive technical expertise-and allows them to focus on their scientific questions. The software can handle a wide range of problems that interest biomechanists, including motion tracking, motion prediction, parameter optimization, model fitting, electromyography-driven simulation, and device design. Moco is the first musculoskeletal direct collocation tool to handle kinematic constraints, which enable modeling of kinematic loops (e.g., cycling models) and complex anatomy (e.g., patellar motion). To show the abilities of Moco, we first solved for muscle activity that produced an observed walking motion while minimizing squared muscle excitations and knee joint loading. Next, we predicted how muscle weakness may cause deviations from a normal walking motion. Lastly, we predicted a squat-to-stand motion and optimized the stiffness of an assistive device placed at the knee. We designed Moco to be easy to use, customizable, and extensible, thereby accelerating the use of simulations to understand the movement of humans and other animals.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Modelos Biológicos / Fenómenos Fisiológicos Musculoesqueléticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Modelos Biológicos / Fenómenos Fisiológicos Musculoesqueléticos Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos