Direct Surface Passivation of Perovskite Film by 4-Fluorophenethylammonium Iodide toward Stable and Efficient Perovskite Solar Cells.
ACS Appl Mater Interfaces
; 13(2): 2558-2565, 2021 Jan 20.
Article
en En
| MEDLINE
| ID: mdl-33416305
Passivating the defective surface of perovskite films is becoming a particularly effective approach to further boost the efficiency and stability of their solar cells. Organic ammonium halide salts are extensively utilized as passivation agents in the form of their corresponding 2D perovskites to construct the 2D/3D perovskite bilayer architecture for superior device performance; however, this bilayer device partly suffers from the postannealing-induced destructiveness to the 3D perovskite bulk and charge transport barrier induced by the quantum confinement existing in the 2D perovskite. Hence, developing direct passivation of the perovskite layer by organic ammonium halides for high-performance devices can well address the above-mentioned issues, which has rarely been explored. Herein, an effective passivation strategy is proposed to directly modify the perovskite surface with an organic halide salt 4-fluorophenethylammonium iodide (F-PEAI) without further postannealing. The F-PEAI passivation largely inhibits the formation of the iodine vacancies and thus dramatically reduces the film defects, resulting in a much slower charge trapping process. Consequently, the F-PEAI-modified device achieves a much higher champion efficiency (21%) than that (19.5%) of the control device, which dominantly results from more efficient suppression of interfacial nonradiative recombination and the subsequent decreased recombination losses. Additionally, the F-PEAI-treated device maintains 90% of its initial efficiency after 720 h of humidity aging owing to the enhanced hydrophobicity and decreased trap states, highlighting good ambient stability. These results provide an effective passivation strategy toward efficient and stable perovskite solar cells.
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2021
Tipo del documento:
Article
País de afiliación:
China