Your browser doesn't support javascript.
loading
Formulation of a Semisolid Emulsion Containing Leptospermum scoparium Essential Oil and Evaluation of In Vitro Antimicrobial and Antibiofilm Efficacy.
Porter, Gemma C; Safii, Syarida H; Medlicott, Natalie J; Duncan, Warwick J; Tompkins, Geoffrey R; Coates, Dawn E.
Afiliación
  • Porter GC; Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
  • Safii SH; Department of Restorative Dentistry, University of Malaya, Kuala Lumpur.
  • Medlicott NJ; School of Pharmacy, University of Otago, Dunedin, New Zealand.
  • Duncan WJ; Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
  • Tompkins GR; Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
  • Coates DE; Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
Planta Med ; 87(3): 253-266, 2021 Mar.
Article en En | MEDLINE | ID: mdl-33434939
Manuka oil, an essential oil derived from the Leptospermum scoparium, has been traditionally used for wound care and as a topical antibacterial, antifungal, and anti-inflammatory. However, the essential oil is not well retained at mucosal sites, such as the oral cavity, where the benefits of the aforementioned properties could be utilized toward the treatment of persistent biofilms. Within this study, L. scoparium essential oil was incorporated into a semisolid emulsion for improved delivery. The safety profile of L. scoparium essential oil on human gingival fibroblasts was determined via cell viability, cytotoxicity, and caspase activation. The minimal bactericidal concentration of L. scoparium essential oil was determined, and the emulsion's antibiofilm effects visualized using confocal laser scanning microscopy. L. scoparium essential oil demonstrated a lower IC50 (0.02% at 48 h) when compared to the clinical control chlorhexidine (0.002% at 48 h) and displayed lower cumulative cytotoxicity. Higher concentrations of L. scoparium essential oil (≥ 0.1%) at 6 h resulted in higher caspase 3/7 activation, suggesting an apoptotic pathway of cell death. A minimal bactericidal concentration of 0.1% w/w was observed for 6 oral bacteria and 0.01% w/v for Porphyromonas gingivalis. Textural and rheometric analysis indicated increased stability of emulsion with a 1 : 3 ratio of L. scoparium essential oil: Oryza sativa carrier oil. The optimized 5% w/w L. scoparium essential oil emulsion showed increased bactericidal penetrative effects on Streptococci gordonii biofilms compared to oil alone and to chlorhexidine controls. This study has demonstrated the safety, formulation, and antimicrobial activity of L. scoparium essential oil emulsion for potential antibacterial applications at mucosal sites.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aceites Volátiles / Leptospermum Idioma: En Revista: Planta Med Año: 2021 Tipo del documento: Article País de afiliación: Nueva Zelanda

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Aceites Volátiles / Leptospermum Idioma: En Revista: Planta Med Año: 2021 Tipo del documento: Article País de afiliación: Nueva Zelanda