Your browser doesn't support javascript.
loading
3D Printing of a Double Network Hydrogel with a Compression Strength and Elastic Modulus Greater than those of Cartilage.
Yang, Feichen; Tadepalli, Vaibhav; Wiley, Benjamin J.
Afiliación
  • Yang F; Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.
  • Tadepalli V; Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.
  • Wiley BJ; Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.
ACS Biomater Sci Eng ; 3(5): 863-869, 2017 May 08.
Article en En | MEDLINE | ID: mdl-33440506
ABSTRACT
This article demonstrates a two-step method to 3D print double network hydrogels at room temperature with a low-cost ($300) 3D printer. A first network precursor solution was made 3D printable via extrusion from a nozzle by adding a layered silicate to make it shear-thinning. After printing and UV-curing, objects were soaked in a second network precursor solution and UV-cured again to create interpenetrating networks of poly(2-acrylamido-2-methylpropanesulfonate) and polyacrylamide. By varying the ratio of polyacrylamide to cross-linker, the trade-off between stiffness and maximum elongation of the gel can be tuned to yield a compression strength and elastic modulus of 61.9 and 0.44 MPa, respectively, values that are greater than those reported for bovine cartilage. The maximum compressive (93.5 MPa) and tensile (1.4 MPa) strengths of the gel are twice that of previous 3D printed gels, and the gel does not deform after it is soaked in water. By 3D printing a synthetic meniscus from an X-ray computed tomography image of an anatomical model, we demonstrate the potential to customize hydrogel implants based on 3D images of a patient's anatomy.
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Biomater Sci Eng Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: ACS Biomater Sci Eng Año: 2017 Tipo del documento: Article País de afiliación: Estados Unidos