Your browser doesn't support javascript.
loading
Nanometal Thermocatalysts: Transformations, Deactivation, and Mitigation.
Zhang, Hanlei; Pan, Jing; Zhou, Qitao; Xia, Fan.
Afiliación
  • Zhang H; Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei, 430078, P. R. China.
  • Pan J; Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei, 430078, P. R. China.
  • Zhou Q; Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei, 430078, P. R. China.
  • Xia F; Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei, 430078, P. R. China.
Small ; 17(7): e2005771, 2021 02.
Article en En | MEDLINE | ID: mdl-33458963
ABSTRACT
Nanometals have been proven to be efficient thermocatalysts in the last decades. Their enhanced catalytic activity and tunable functionalities make them intriguing candidates for a wide range of catalytic applications, such as gaseous reactions and compound synthesis/decomposition. On the other hand, the enhanced specific surface energy and reactivity of nanometals can lead to configuration transformation and thus catalytic deactivation during the synthesis and catalysis, which largely undermines the activity and service time, thereby calling for urgent research effort to understand the deactivating mechanisms and develop efficient mitigating methods. Herein, the recent progress in understanding the configuration transformation-induced catalytic deactivation within nanometals is reviewed. The major pathways of configuration transformations, and their kinetics controlled by the environmental factors are presented. The approaches toward mitigating the transformation-induced deactivation are also presented. Finally, a perspective on the future academic approaches toward in-depth understanding of the kinetics of the deactivation of nanometals is proposed.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Catálisis Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Catálisis Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article