Your browser doesn't support javascript.
loading
Quantitatively Monitoring In Situ Mitochondrial Thermal Dynamics by Upconversion Nanoparticles.
Di, Xiangjun; Wang, Dejiang; Zhou, Jiajia; Zhang, Lin; Stenzel, Martina H; Su, Qian Peter; Jin, Dayong.
Afiliación
  • Di X; Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
  • Wang D; Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
  • Zhou J; Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
  • Zhang L; Cluster for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
  • Stenzel MH; Cluster for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
  • Su QP; Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
  • Jin D; School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia.
Nano Lett ; 21(4): 1651-1658, 2021 02 24.
Article en En | MEDLINE | ID: mdl-33550807
ABSTRACT
Temperature dynamics reflect the physiological conditions of cells and organisms. Mitochondria regulate the temperature dynamics in living cells as they oxidize the respiratory substrates and synthesize ATP, with heat being released as a byproduct of active metabolism. Here, we report an upconversion nanoparticle-based thermometer that allows the in situ thermal dynamics monitoring of mitochondria in living cells. We demonstrate that the upconversion nanothermometers can efficiently target mitochondria, and the temperature-responsive feature is independent of probe concentration and medium conditions. The relative sensing sensitivity of 3.2% K-1 in HeLa cells allows us to measure the mitochondrial temperature difference through the stimulations of high glucose, lipid, Ca2+ shock, and the inhibitor of oxidative phosphorylation. Moreover, cells display distinct response time and thermodynamic profiles under different stimulations, which highlight the potential applications of this thermometer to study in situ vital processes related to mitochondrial metabolism pathways and interactions between organelles.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Nanopartículas Límite: Humans Idioma: En Revista: Nano Lett Año: 2021 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Nanopartículas Límite: Humans Idioma: En Revista: Nano Lett Año: 2021 Tipo del documento: Article País de afiliación: Australia