Your browser doesn't support javascript.
loading
Base-pair resolution analysis of the effect of supercoiling on DNA flexibility and major groove recognition by triplex-forming oligonucleotides.
Pyne, Alice L B; Noy, Agnes; Main, Kavit H S; Velasco-Berrelleza, Victor; Piperakis, Michael M; Mitchenall, Lesley A; Cugliandolo, Fiorella M; Beton, Joseph G; Stevenson, Clare E M; Hoogenboom, Bart W; Bates, Andrew D; Maxwell, Anthony; Harris, Sarah A.
Afiliación
  • Pyne ALB; Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK. a.l.pyne@sheffield.ac.uk.
  • Noy A; London Centre for Nanotechnology, University College London, London, UK. a.l.pyne@sheffield.ac.uk.
  • Main KHS; Department of Physics, Biological Physical Sciences Institute, University of York, York, UK. agnes.noy@york.ac.uk.
  • Velasco-Berrelleza V; London Centre for Nanotechnology, University College London, London, UK.
  • Piperakis MM; UCL Cancer Institute, University College London, London, UK.
  • Mitchenall LA; Department of Physics, Biological Physical Sciences Institute, University of York, York, UK.
  • Cugliandolo FM; Department of Biological Chemistry, John Innes Centre, Norwich, UK.
  • Beton JG; Department of Chemistry, University of Reading, Whiteknights, Reading, UK.
  • Stevenson CEM; Department of Biological Chemistry, John Innes Centre, Norwich, UK.
  • Hoogenboom BW; Department of Biological Chemistry, John Innes Centre, Norwich, UK.
  • Bates AD; Department of Pathology, Division of Immunology, University of Cambridge, Cambridge, UK.
  • Maxwell A; London Centre for Nanotechnology, University College London, London, UK.
  • Harris SA; Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK.
Nat Commun ; 12(1): 1053, 2021 02 16.
Article en En | MEDLINE | ID: mdl-33594049
ABSTRACT
In the cell, DNA is arranged into highly-organised and topologically-constrained (supercoiled) structures. It remains unclear how this supercoiling affects the detailed double-helical structure of DNA, largely because of limitations in spatial resolution of the available biophysical tools. Here, we overcome these limitations, by a combination of atomic force microscopy (AFM) and atomistic molecular dynamics (MD) simulations, to resolve structures of negatively-supercoiled DNA minicircles at base-pair resolution. We observe that negative superhelical stress induces local variation in the canonical B-form DNA structure by introducing kinks and defects that affect global minicircle structure and flexibility. We probe how these local and global conformational changes affect DNA interactions through the binding of triplex-forming oligonucleotides to DNA minicircles. We show that the energetics of triplex formation is governed by a delicate balance between electrostatics and bonding interactions. Our results provide mechanistic insight into how DNA supercoiling can affect molecular recognition, that may have broader implications for DNA interactions with other molecular species.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oligonucleótidos / ADN Superhelicoidal / Emparejamiento Base / Conformación de Ácido Nucleico Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Oligonucleótidos / ADN Superhelicoidal / Emparejamiento Base / Conformación de Ácido Nucleico Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Reino Unido