Your browser doesn't support javascript.
loading
African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning.
Hengl, Tomislav; Miller, Matthew A E; Krizan, Josip; Shepherd, Keith D; Sila, Andrew; Kilibarda, Milan; Antonijevic, Ognjen; Glusica, Luka; Dobermann, Achim; Haefele, Stephan M; McGrath, Steve P; Acquah, Gifty E; Collinson, Jamie; Parente, Leandro; Sheykhmousa, Mohammadreza; Saito, Kazuki; Johnson, Jean-Martial; Chamberlin, Jordan; Silatsa, Francis B T; Yemefack, Martin; Wendt, John; MacMillan, Robert A; Wheeler, Ichsani; Crouch, Jonathan.
Afiliación
  • Hengl T; EnvirometriX Ltd, Wageningen, The Netherlands. tom.hengl@envirometrix.net.
  • Miller MAE; OpenGeoHub Foundation, Wageningen, The Netherlands. tom.hengl@envirometrix.net.
  • Krizan J; Innovative Solutions for Decision Agriculture Ltd (iSDA), Harpenden, United Kingdom.
  • Shepherd KD; MultiOne Ltd, Zagreb, Croatia.
  • Sila A; World Agroforestry (ICRAF), Nairobi, Kenya.
  • Kilibarda M; World Agroforestry (ICRAF), Nairobi, Kenya.
  • Antonijevic O; Department of Geodesy and Geoinformatics, Faculty of Civil Engineering, University of Belgrade, Belgrade, Serbia.
  • Glusica L; Department of Geodesy and Geoinformatics, Faculty of Civil Engineering, University of Belgrade, Belgrade, Serbia.
  • Dobermann A; GILAB Ltd, Belgrade, Serbia.
  • Haefele SM; International Fertilizer Association (IFA), Paris, France.
  • McGrath SP; Rothamsted Research, Harpenden, United Kingdom.
  • Acquah GE; Rothamsted Research, Harpenden, United Kingdom.
  • Collinson J; Rothamsted Research, Harpenden, United Kingdom.
  • Parente L; Innovative Solutions for Decision Agriculture Ltd (iSDA), Harpenden, United Kingdom.
  • Sheykhmousa M; OpenGeoHub Foundation, Wageningen, The Netherlands.
  • Saito K; OpenGeoHub Foundation, Wageningen, The Netherlands.
  • Johnson JM; Africa Rice Center (AfricaRice), Bouaké, Côte d'Ivoire.
  • Chamberlin J; Africa Rice Center (AfricaRice), Bouaké, Côte d'Ivoire.
  • Silatsa FBT; International Maize and Wheat Improvement Centre (CIMMYT), Nairobi, Kenya.
  • Yemefack M; Sustainable Tropical Solutions (STS) Sarl, Yaoundéc, Cameroon.
  • Wendt J; Sustainable Tropical Solutions (STS) Sarl, Yaoundéc, Cameroon.
  • MacMillan RA; International Fertilizer Development Center (IFDC), Muscle Shoals, AL, USA.
  • Wheeler I; OpenGeoHub Foundation, Wageningen, The Netherlands.
  • Crouch J; EnvirometriX Ltd, Wageningen, The Netherlands.
Sci Rep ; 11(1): 6130, 2021 03 17.
Article en En | MEDLINE | ID: mdl-33731749
Soil property and class maps for the continent of Africa were so far only available at very generalised scales, with many countries not mapped at all. Thanks to an increasing quantity and availability of soil samples collected at field point locations by various government and/or NGO funded projects, it is now possible to produce detailed pan-African maps of soil nutrients, including micro-nutrients at fine spatial resolutions. In this paper we describe production of a 30 m resolution Soil Information System of the African continent using, to date, the most comprehensive compilation of soil samples ([Formula: see text]) and Earth Observation data. We produced predictions for soil pH, organic carbon (C) and total nitrogen (N), total carbon, effective Cation Exchange Capacity (eCEC), extractable-phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), sodium (Na), iron (Fe), zinc (Zn)-silt, clay and sand, stone content, bulk density and depth to bedrock, at three depths (0, 20 and 50 cm) and using 2-scale 3D Ensemble Machine Learning framework implemented in the mlr (Machine Learning in R) package. As covariate layers we used 250 m resolution (MODIS, PROBA-V and SM2RAIN products), and 30 m resolution (Sentinel-2, Landsat and DTM derivatives) images. Our fivefold spatial Cross-Validation results showed varying accuracy levels ranging from the best performing soil pH (CCC = 0.900) to more poorly predictable extractable phosphorus (CCC = 0.654) and sulphur (CCC = 0.708) and depth to bedrock. Sentinel-2 bands SWIR (B11, B12), NIR (B09, B8A), Landsat SWIR bands, and vertical depth derived from 30 m resolution DTM, were the overall most important 30 m resolution covariates. Climatic data images-SM2RAIN, bioclimatic variables and MODIS Land Surface Temperature-however, remained as the overall most important variables for predicting soil chemical variables at continental scale. This publicly available 30-m Soil Information System of Africa aims at supporting numerous applications, including soil and fertilizer policies and investments, agronomic advice to close yield gaps, environmental programs, or targeting of nutrition interventions.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Países Bajos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Países Bajos