Your browser doesn't support javascript.
loading
Deformable microparticles for shuttling nanoparticles to the vascular wall.
Fish, Margaret B; Banka, Alison L; Braunreuther, Margaret; Fromen, Catherine A; Kelley, William J; Lee, Jonathan; Adili, Reheman; Holinstat, Michael; Eniola-Adefeso, Omolola.
Afiliación
  • Fish MB; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
  • Banka AL; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
  • Braunreuther M; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
  • Fromen CA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
  • Kelley WJ; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
  • Lee J; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
  • Adili R; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA.
  • Holinstat M; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA.
  • Eniola-Adefeso O; Department of Cardiovascular Medicine, Samuel and Jean Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA.
Sci Adv ; 7(17)2021 04.
Article en En | MEDLINE | ID: mdl-33883129
ABSTRACT
Vascular-targeted drug carriers must localize to the wall (i.e., marginate) and adhere to a diseased endothelium to achieve clinical utility. The particle size has been reported as a critical physical property prescribing particle margination in vitro and in vivo blood flows. Different transport process steps yield conflicting requirements-microparticles are optimal for margination, but nanoparticles are better for intracellular or tissue delivery. Here, we evaluate deformable hydrogel microparticles as carriers for transporting nanoparticles to a diseased vascular wall. Depending on microparticle modulus, nanoparticle-loaded poly(ethylene glycol)-based hydrogel microparticles delivered significantly more 50-nm nanoparticles to the vessel wall than freely injected nanoparticles alone, resulting in >3000% delivery increase. This work demonstrates the benefit of optimizing microparticles' efficient margination to enhance nanocarriers' transport to the vascular wall.

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos