Your browser doesn't support javascript.
loading
Bleeding Entity Recognition in Electronic Health Records: A Comprehensive Analysis of End-to-End Systems.
Mitra, Avijit; Rawat, Bhanu Pratap Singh; McManus, David; Kapoor, Alok; Yu, Hong.
Afiliación
  • Mitra A; College of Information and Computer Science, University of Massachusetts Amherst, Amherst, MA, United States.
  • Rawat BPS; College of Information and Computer Science, University of Massachusetts Amherst, Amherst, MA, United States.
  • McManus D; Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States.
  • Kapoor A; Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States.
  • Yu H; College of Information and Computer Science, University of Massachusetts Amherst, Amherst, MA, United States.
AMIA Annu Symp Proc ; 2020: 860-869, 2020.
Article en En | MEDLINE | ID: mdl-33936461
A bleeding event is a common adverse drug reaction amongst patients on anticoagulation and factors critically into a clinician's decision to prescribe or continue anticoagulation for atrial fibrillation. However, bleeding events are not uniformly captured in the administrative data of electronic health records (EHR). As manual review is prohibitively expensive, we investigate the effectiveness of various natural language processing (NLP) methods for automatic extraction of bleeding events. Using our expert-annotated 1,079 de-identified EHR notes, we evaluated state-of-the-art NLP models such as biLSTM-CRF with language modeling, and different BERT variants for six entity types. On our dataset, the biLSTM-CRF surpassed other models resulting in a macro F1-score of 0.75 whereas the performance difference is negligible for sentence and document-level predictions with the best macro F1-scores of 0.84 and 0.96, respectively. Our error analyses suggest that the models' incorrect predictions can be attributed to variability in entity spans, memorization, and missing negation signals.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos / Registros Electrónicos de Salud / Hemorragia Tipo de estudio: Guideline / Prognostic_studies Límite: Humans Idioma: En Revista: AMIA Annu Symp Proc Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos / Registros Electrónicos de Salud / Hemorragia Tipo de estudio: Guideline / Prognostic_studies Límite: Humans Idioma: En Revista: AMIA Annu Symp Proc Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos