Your browser doesn't support javascript.
loading
Light-Triggered In Situ Gelation of Hydrogels using 2D Molybdenum Disulfide (MoS2 ) Nanoassemblies as Crosslink Epicenter.
Lee, Hung Pang; Lokhande, Giriraj; Singh, Kanwar Abhay; Jaiswal, Manish K; Rajput, Satyam; Gaharwar, Akhilesh K.
Afiliación
  • Lee HP; Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.
  • Lokhande G; Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.
  • Singh KA; Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.
  • Jaiswal MK; Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.
  • Rajput S; Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.
  • Gaharwar AK; Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA.
Adv Mater ; 33(23): e2101238, 2021 Jun.
Article en En | MEDLINE | ID: mdl-33938048
ABSTRACT
Light-responsive biomaterials are an emerging class of materials used for developing noninvasive, noncontact, precise, and controllable biomedical devices. Long-wavelength near-infrared (NIR) radiation is an attractive light source for in situ gelation due to its higher penetration depth and minimum side effects. The conventional approach to obtain crosslinked biomaterials relies heavily on the use of a photoinitiator by generating reactive species when exposed to short-wavelength radiation, which is detrimental to surrounding cells and tissue. Here, a new class of NIR-triggered in situ gelation system based on defect-rich 2D molybdenum disulfide (MoS2 ) nanoassemblies and thiol-functionalized thermoresponsive polymer in the absence of a photoinitiator is introduced. Exposure to NIR radiation activates the dynamic polymer-nanomaterials interactions by leveraging the photothermal characteristics of MoS2 and intrinsic phase transition ability of the thermoresponsive polymer. Specifically, upon NIR exposure, MoS2 acts as a crosslink epicenter by connecting with multiple polymeric chains via defect-driven click chemistry. As a proof-of-concept, the utility of NIR-triggered in situ gelation is demonstrated in vitro and in vivo. Additionally, the crosslinked gel exhibits the potential for NIR light-responsive release of encapsulated therapeutics. These light-responsive biomaterials have strong potential for a range of biomedical applications, including artificial muscle, smart actuators, 3D/4D printing, regenerative medicine, and therapeutic delivery.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Disulfuros / Molibdeno Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Disulfuros / Molibdeno Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos