Your browser doesn't support javascript.
loading
EMNUSS: a deep learning framework for secondary structure annotation in cryo-EM maps.
He, Jiahua; Huang, Sheng-You.
Afiliación
  • He J; School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China.
  • Huang SY; School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China.
Brief Bioinform ; 22(6)2021 11 05.
Article en En | MEDLINE | ID: mdl-33954706
Cryo-electron microscopy (cryo-EM) has become one of important experimental methods in structure determination. However, despite the rapid growth in the number of deposited cryo-EM maps motivated by advances in microscopy instruments and image processing algorithms, building accurate structure models for cryo-EM maps remains a challenge. Protein secondary structure information, which can be extracted from EM maps, is beneficial for cryo-EM structure modeling. Here, we present a novel secondary structure annotation framework for cryo-EM maps at both intermediate and high resolutions, named EMNUSS. EMNUSS adopts a three-dimensional (3D) nested U-net architecture to assign secondary structures for EM maps. Tested on three diverse datasets including simulated maps, middle resolution experimental maps, and high-resolution experimental maps, EMNUSS demonstrated its accuracy and robustness in identifying the secondary structures for cyro-EM maps of various resolutions. The EMNUSS program is freely available at http://huanglab.phys.hust.edu.cn/EMNUSS.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Modelos Moleculares / Estructura Secundaria de Proteína / Biología Computacional / Aprendizaje Profundo Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Banco de datos: MEDLINE Asunto principal: Programas Informáticos / Modelos Moleculares / Estructura Secundaria de Proteína / Biología Computacional / Aprendizaje Profundo Idioma: En Revista: Brief Bioinform Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2021 Tipo del documento: Article