EMNUSS: a deep learning framework for secondary structure annotation in cryo-EM maps.
Brief Bioinform
; 22(6)2021 11 05.
Article
en En
| MEDLINE
| ID: mdl-33954706
Cryo-electron microscopy (cryo-EM) has become one of important experimental methods in structure determination. However, despite the rapid growth in the number of deposited cryo-EM maps motivated by advances in microscopy instruments and image processing algorithms, building accurate structure models for cryo-EM maps remains a challenge. Protein secondary structure information, which can be extracted from EM maps, is beneficial for cryo-EM structure modeling. Here, we present a novel secondary structure annotation framework for cryo-EM maps at both intermediate and high resolutions, named EMNUSS. EMNUSS adopts a three-dimensional (3D) nested U-net architecture to assign secondary structures for EM maps. Tested on three diverse datasets including simulated maps, middle resolution experimental maps, and high-resolution experimental maps, EMNUSS demonstrated its accuracy and robustness in identifying the secondary structures for cyro-EM maps of various resolutions. The EMNUSS program is freely available at http://huanglab.phys.hust.edu.cn/EMNUSS.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Banco de datos:
MEDLINE
Asunto principal:
Programas Informáticos
/
Modelos Moleculares
/
Estructura Secundaria de Proteína
/
Biología Computacional
/
Aprendizaje Profundo
Idioma:
En
Revista:
Brief Bioinform
Asunto de la revista:
BIOLOGIA
/
INFORMATICA MEDICA
Año:
2021
Tipo del documento:
Article